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Requirements as torque, power, specific fuel consumption and emitted compounds are highly influenced by the
chemical composition of the fuel being burned. Thus, the aim of this study was to assess the use of oxygenated
fuels on emissions of NOx, CO, HC, CO2 and particle number and size distribution (11.5 b Da b 365.2 nm). In
this paper a cycle diesel engine coupled to a dynamometer bench was used, where three types of fuels were
employed, B5 (diesel with 5% of biodiesel); B5E6 (ternary composition containing 89% diesel, 5% of biodiesel
and 6% of ethanol); and B100 (100% of biodiesel). The performance of a diesel engine was also evaluated to
see the impact of the oxygenated fuels in this kind of engine. The use of ethanol with high latent heat of
vaporization and low cetane number added to the binary blend (B5) shown an increase in the HC emissions
and a reduction in NOx emissions when compared to B5. The use of pure biodiesel (B100) with high oxygen
content showed a reduction in the HC emissions, but presented the highest emissions for both NOx and particle
number of smaller diameter among the studied fuels. The use of more oxygenated fuels reduced the power
output and increased the fuel consumption, but the exergy analysis showed that the energy efficiency of these
fuels could be considered similar to the B5 fuel.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Diesel engines, due to its excellent drivability and fuel economy are
the most common internal combustion engines. These basic machines
are widely used in fixed and mobile systems, especially where there is
a need of high power, improved fuel efficiency and high torque at low
revs [1,2]. Its use is becoming more common and will become more
intense with greater economic development [3].

These engines generate fewer emissions of most of the regulated
compounds, carbon monoxide (CO), unburned hydrocarbons (HC)
and carbon dioxide (CO2), for example, they appear almost always
with inferior values found in spark ignition engines [4]. However, the
emissions from diesel engines contain considerable levels of nitrogen
oxides (NOx) and particulate matter (PM), and among the fossil fuels,
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diesel is the one with the highest emission factors of these compounds
when compared to other fuels [5].

In recent years the legislation that regulates the pollutant emissions
has established increasingly lower limits, the technological evolution of
vehicles manufactured afforded the care of these increasingly stringent
limits. In this scenario, fuels from renewable resources gained enough
prominence and emerged as alternatives to fossil fuels [6]. Several
tests have been performed with biodiesel to ascertain the impacts on
engine performance, fuel consumption and the emission of pollutants
mainly in relation to diesel [7–20].

Researchers have evaluated the impact of themixture of various ox-
ygenates to diesel fuel. The oxygenate additives commonly investigated
are alcohols [10,19,21] and methyl or ethyl esters (biodiesel) [9,10,15,
22]. The mixture of these additives to the oil provides the necessary
oxygen to form CO2 instead of carbon-rich particles. This, in turn, may
cause a reduction of particulate matter emissions [23].

Many studies are found in the literature on the issue of HC, NOx, PM
and CO emissions, generated by diesel engines. However, it is not so
simple to compare these results, since different types of engines, fuels,
fuel blends, and working conditions are used. Theses factors have
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significant influence on the emission of compounds and engine
performance [24,25].

Martins et al. [12] evaluated the emission of PM from heavy-duty
engines fueled by diesel and biodiesel blend. In this study, PM was
characterized by impaction from the emission of heavy vehicles fueled
with a mixture of diesel/biodiesel (B3 — 3% biodiesel and 97% diesel)
in Londrina, Brazil. Among the evaluated material the dominant parti-
cles were fine and ultrafine. The amount of fine and ultrafine particles
from diesel burning was increased when compared to the results of
tests when biodiesel were used.

Diesel burning can be considered the main emitter of particulate
matter when compared with both ethanol and gasoline burning. In
general, one can say that the concentration of PM emitted and the
amount of chemical compounds adsorbed in their surface depend on
the operating parameters such as speed, load, type and age of the
engine, and the fuel composition, temperature and relative humidity
[30]. The use of more oxygenated fuels could be a parameter that will
interfere also in both chemical composition and size distribution of
these particles.

Biswas et al. [26] observed substantial emissions reductions in
particulate mass (N90%) when using a heavy diesel vehicle operating
with advanced emission control technologies. This reduction was not
observed for the particle number concentrations at cruise conditions,
with exceptions hybrid— CCRT® and EPF vehicles, whichwere efficient
in controlling emissions both in mass and in number.

So far, respiratory tract deposition of inhaled particles has been
extensively investigated using computational works [27–30] and
indicated that the tracheobronchial and the alveolar deposition
fractions of nanoparticles are smaller at intense activity than at rest,
but extrathoracic deposition increases during intense activity. Authors
suggested that both particulate mass and the number concentration
measurements are necessary to assess health effects of diesel exhaust
particles.

Therefore, the aim of this study was to assess the use of oxygenated
fuels on emissions of NOx, CO, HC, CO2, and particle number and size
distribution (11.5 b Da b 365.2 nm). The performance of a diesel engine
also was evaluated to see the impact of the oxygenated fuels.
2. Experimental

2.1. Fuels and chemicals

Three kinds of fuel were used in this work: (i) pure soybean oil
biodiesel (B100); (ii) binary blend of diesel with 5% of biodiesel (B5);
and (iii) ternary blend with 89% of diesel, 5% of biodiesel and 6% of
ethanol (B5E6). The pure soybean biodiesel employed in the tests were
kindly donated by Petrobahia (Distribuidora de Petroleo da Bahia S.A.);
ethanol 99.3% was purchased from Pro-Análise®; commercial B5 was
purchased from Petrobras Fuel Station (Petrobras Distribuidora, Brazil),
and ternary blend was prepared using both fuels B100 and B5. The
specifications of the fuels are listed in Table 1. The cetane number
determined by the CFR test (ASTM D-613) using secondary standards.
The lubricating oil used for all tests was Lubrax CI-4 (15W-40) produced
by Petrobras ®.
Table 1
Fuel specifications for B5, B100 and ethanol.

Characteristics B5 B5E6 B100 Ethanol

Density (g mL−1, 20 °C) 0.853 0.821 0.870 0.790
Viscosity (cSt, at 40C) 4.12 3.40 4.20 1.18
Latent heat of vaporization (kJ·kg−1) 270 350 200 840
Cetane number 48 41 56 6
Lower calorific value (kJ·kg−1) 42,820 41,733 36,395 28,300
2.2. Evaluation of the emission and performance of the diesel engine

A diesel engine, Agrale, model N790, speed rate of 1800 rpm, 4
strokes, operating in a stationarymode andwith 70% of loading, coupled
to a steady-state hydraulic dynamometer (SCHENK), was used for the
tests. The engine's main characteristics are listed in Table 2.

The regulated pollutants including NOx, CO, HC, and CO2 were
measured online with a TELEGAN TEMPEST-100 exhaust gas analyzer.
The sampling timewas 15min at each operating condition. The relative
standard deviations of the analyzer are less than 3.5% for NOx, 4.5% for
CO, and 2% for CO2.

The particle number and size distribution (11.5 b Da b 365.2 nm)
were measured for 10 min, with ten replicates for each fuel (B100, B5
and B5B6). The samples were collected by Particle Counter (TSI model
3910) connected at Dilution tunnel with constant volume sampling
(Fig. 1), using an air:exhaust rate of the 20:1. Flexible, conductive tubing
(Part 3001940, TSI Inc., St. Paul, MN) was used for sampling to avoid
particle losses due to electrostatic forces.

The brake specific fuel consumption (BSFC) of the fuel blends was
evaluated using a gravimetric method. A vessel with each test fuel was
placed on a precision balance during the tests. The difference in mass
observed during each period indicated on the balance was used to
determine the mass consumption for each fuel. Thus, BSFC was defined
as the ratio between the total consumption of fuel and energy
consumed at a time and evaluated in g/kW. It was obtained according
to Eq. (1).

BSFC ¼ mf

Wvc
•

:Δt
ð1Þ

Where:

mf is the mass of the total fuel consumed;

Wvc
•

is the average of the instantaneous power, measured in kW;
Δt is the sampling time in hours.

The engine efficiency (EE) defined as the energy produced by the
generator and the energy contained in the BSFC was determined
according to Eq. (2).

EE %ð Þ ¼ Wvc
•

mf � LHV f

 !
� 100 ð2Þ

Where:

mf is the mass of the total fuel consumed;
Wvc
•

is the average of the instantaneous power, measured in kW;
LHVf is the lower calorific value of the fuel tested in kJ/kg.

The tests were performed at a temperature of 29 ± 2 ° C, while the
humidity was kept constant at 58 ± 2%. For each cycle, the engine was
heated for 30 min. The lubricating oil was substituted for each fuel test.
Table 2
Main characteristics of the diesel engine.

Characteristics Diesel engine

Model N790
Number of cylinders 2 verticals
Swept volume (cm3) 1272 cm3

Compression ratio 20:1
Fuel g injection system Direct
Potency NF (NBRISO 1585) (Cv kW−1 rpm−1) 19.8
Engine cooling system Air



Fig. 1. Scheme of the sampling system for particles matter and gases.
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3. Results and discussion

3.1. Evaluation of the emissions profile of fuel blends

Fig. 2(a) shows the results of CO2 emissionsmeasured in percentage
on dry basis (v/v). The values obtained for CO2 emissions from burning
the fuels studied can be considered statistically equal. However, the
emissions generated by biofuels during combustion in internal combus-
tion engines can be considered “recyclables” due to the vegetable
photosynthesis. The CO2 is released into the atmosphere when the
biofuel is burned and it is recycled by the growing plants, which are
later processed into the fuel [31].

The results for emissions of HC are shown in Fig. 2(a). Burning B5E6
showed an increase of HC emissions. This fact may be associated with
lower cetane number of the fuel compared to the others and conse-
quently weak ignition and reducing the temperature of the combustion
chamber. Thus, the addition of ethanol in the B5 fuel increases incom-
plete combustion favoring the formation of HC. This result is in agree-
ment with the data obtained by other researchers Lei et al. [32] and
Tsang et al. [33]. The use of B100 had lower HC emissions compared to
other fuel mixtures. This is due to the fact that the B100 fuel presents
high oxygen content and high cetane number, which best feature your
Fig. 2. (a) The CO2 (%) and HC (ppm) emission concentration; and (b) CO (ppm) and NOx

(ppm) emission concentration for all fuel.
ignition. The reduction of HC emissions with use of biodiesel fuel was
also confirmed by Di et al. [34]. However Lin et al. [35] found no
significant variation in the HC emissions with the increase content of
biodiesel into to diesel fuel.

The results for emissions of NOx and CO are shown in Fig. 2(b). The
addition of ethanol (B5E6) caused a slight reduction of NOx emissions.
The NOx formed in the combustion chamber by the heat released by
the fuel and thus is the high latent heat of vaporization and low calorific
ethanol contribute to the reduction of NOx [36]. Many researchers re-
ported significant benefits of using ethanol blend fuels in terms of NOx

reduction [37–39]. However, the low cetane number of ethanol and its
high oxygen content favors the increase in emissions of nitrogen oxides.
Factors such as the high latent heat of vaporization of ethanol and Lower
Calorific Value (LCV) may have excelled over other fewer dominants,
causing a reduction of the peak pressure and temperature in the com-
bustion chamber, reducing thus NOx emissions [21]. Among tested
fuels, B100 (fuel that has higher oxygen content) showed higher NOx

emissions and it presents a high modulus of volumetric compressibility
[40] that has its early injection compared to petroleumdiesel, which en-
hances the premixing combustion promoting the temperature increase
of the chamber and the formation of NOx [35].

Carbonmonoxide is a toxic, odorless and generally formedwhen the
engine operates in a condition rich equivalence ratio of fuel/air. Addition
of ethanol in the mixture B5 presented a small reduction in CO emis-
sions, which can be considered statistically equal, possibly due to low
concentration (Fig. 2b). Ethanol can provide a more efficient combus-
tion; it may take a greater amount of oxygen to some parts of the
combustion chamber. Guarieiro et al. [10] found similar results for
ethanol content of 5% in the mixture, while Tsang et al. [33] observed
conflicting results, reporting increased emissions of CO with increasing
ethanol content injected into the engine.

The particlematerialmass size distributions (df/f ∗ dlog dp versus dp
where f is the mass fraction of PM concentration in a certain size inter-
val) from burning of three studied fuel (B5, B5E6 and B100) are shown
in Fig. 3. The burning of fuels showed concentrations of particles trendy
accumulation of 50 b Da b 200 nm (Fig. 3). In general, particles emitted
from diesel engines are in the size range 20–130 nm [41]. The geometric
mean obtained for both fuels B5 and B5E6was δ=86.6± 3.7 nm, with a
total number of particles of 9.6 × 106 particles/cm3 for the B5 and 1.1 ×
107 particles/cm3 to the B5E6. The B100 showed geometric mean
of δ=78.1± 3.1 nmwith total number of particles of 1.4 × 107 par-
ticles/cm3.

Applying a principal component analysis (PCA) on the datamatrix of
the samples, it was found that the cumulative variance for PC1 and PC2
was 84.21% with the formation of three distribution groups (Fig. 4).

As a result of PCA analysis, it is possible to identify the group with
greater values andnegative scores (B5) showed increased particle emis-
sions with larger diameter, while other fuels B100 and B5E6 (shifted
more to the right of the graph) showed greater particle emissions
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Fig. 4. Results of the scores for the B5 (red), B5E6 (black) and B100 (blue) fuels.
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with lesser diameters (Fig. 4). These observed results is according with
the data obtained by Tsolakis [42] and Cheng et al. [43], where was
observaded also an increase in the number of smaller particulate emis-
sions when biodiesel is used instead blends diesel with alcohol fuel. As
the engine used in thiswork hasmechanical injection, an anticipated in-
jection can happen due to high modulus of volumetric compressibility
of the B100, and this makes it longer to mix with the air. Thus, there is
an increase in premixed combustion fraction due to the ignition delay
that can generate a lesser incomplete burning, reducing the size of the
particles and consequently increasing their concentration [43]. Howev-
er, the nucleation, condensation and coagulation of theHC in the engine
exhaust will generate some particles, leading to more particulate, both
in number and in mass, than the B5 and B5E6.

On the other hand, Young et al. [44] examined the number emission
characteristics of 10–1000 nm nonvolatile particles from a heavy-duty
diesel engine, operatingwith variouswaste cooking oil biodiesel blends
(B2, B10 and B20) and engine loads. This research showed the number
of particles decreased with increasing biodiesel blend at 0% load. At 25%
and 50% loads, the number of soot particles decreased with increasing
biodiesel blend. Therefore, the number reduction with increasing
biodiesel blend was not limited to soot particles but also included the
particles. This is likely due to the increased oxygen content, lower
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Fig. 5. Power output for B5, B5E6 and B100 fuels.
aromatic content, prolonged soot oxidation time, and lower final boiling
point with increasing biodiesel blend [40,41,45].

3.2. Evaluation of engine efficiency

Fig. 5 shows the results from power output of themotor for each fuel
tested. Binary mixture B5 showed higher power output by having a su-
perior calorific value to other fuels. As biodiesel has lower calorific value
among the three fuels tested, it showed lower power output. Çetinkaya
et al. [46] found similar results reporting slight power loss with the use
of pure biodiesel. The ternary mixture (B5E6) had the lowest measures
of powers, although having intermediate calorific value among the test-
ed fuels. A discrete formation of microbubbles in the fuel tank for run
times higher at one o'clock indicating the small fuel vaporization injec-
tion with hot fuel line was verified. The high volatility of ethanol can
promote their vaporization in the return line, which can harm the injec-
tion process in diesel direct injection engines. The low cetane number of
ethanol may also explain this significant reduction.

The BSFC results are shown in Fig. 6. Although the ternary mixture
(B5E6) has presented a lower power among studied fuels, this fuel
had low absolute consumption, providing an intermediary specific
consumption between the B5 and the B100. Zhu et al. [36] also found
similar results, reporting an increase in specific consumption in the eth-
anol content. The author justified this increase by reducing the calorific
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value of the fuel. The biodiesel has lower calorific value, obtained higher
specific consumption, a fact also reported by Whalen et al. [47].

The B100 fuel showed higher thermal efficiency, though having
higher BSFC (Fig. 7). This fuel had power output very close to the binary
mixture (B5) and a lower calorific value among all tested fuels. Canakcı
et al. [48] found similar results, justifying the increase of energetic and
exergetic income with the use of biodiesel, due to the high cetane
number and oxygen content present in this fuel. The use of ethanol
can led to a significant reduction in power, which contributed to
decrease the EE. Law et al. [32] found similar results to those obtained
in this present work. However these researchers reported a small
increase in efficiency for low concentrations of ethanol. Even with low
cetane number of alcohol, the oxygen present in the ethanol molecule
can contribute to improve the efficiency of the combustion process.
4. Conclusions

The impact evaluation of the emissions from the use of fuels with
higher content of oxygen added to B5 (commercial fuel) presented,
for addition of 6% ethanol (B5E6), an increase in the emission of HC
and number of smaller particles and a reduction in CO, CO2 and number
of larger particles. While emissions of NOx could be considered statisti-
cally equal. The burning pure biodiesel (B100), with higher oxygen
content than the both B5 and B5E6 fuels, showed an increase in
emissions of NOx and particle number of smaller diameter and reduced
emissions of HC, CO and particle number of larger diameter. Emissions
of CO2 could be considered statistically equal.

The use of more oxygenated fuels (B5E6 and B100) can cause a
reduction in power output and increased fuel consumption, but the
exergy analysis showed that even with these results described above,
the EE of these fuels can be considered similar to the B5 fuel.
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