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Abstract

New product development (NPD) projects are typically managed through a series of screens, or gates, where ideas 
compete for resources. Ideas are carved into projects, and these projects are reviewed, and approved or terminated 
through the screening process so that only the best performing projects continue to subsequent stages of design, 
development and testing, and are released into the market place (Krishnan and Ulrich 2001; Terwiesch and Ulrich 2009). 
Most large innovative organizations deal with more than one NPD project at a time and typically engage in product pipeline 
management (PPM), where a set of active projects are evaluated together while they traverse through a sequence of such
screens. Key decisions in a R&D pipeline are: screen thresholds, complexity of projects, resource allocation and 
capacity adjustment biases. We explore the impact of structural and behavioral aspects of these decisions through a 
simulation based analysis of a pharmaceutical dataset. Results establish concave relationships between value created at 
the end of pipeline and the resource allocation and complexity allocation biases, indicating optimizability and a limit for  
front loading practices.
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risk, and the resolution of uncertainty. Wheelwright and 
Clark (1992) describe typical decision levers in this setting: 
resource allocation (allocating workers), selection of task 
complexity (defining number, size and relations between 
tasks), capacity utilization (work intensity), and the level of 
threshold (minimum quality or expected value) for passing 
through a screen and the frequency of screening.  Resource 
allocation dictates the types and amounts of resources avail-
able for executing tasks before a project, or a cohort of 
projects, goes through a screen. Complexity selection de-
fines the nature of these tasks, and the amount of resources 
it takes to complete these tasks. Even though the level of 
complexity at each stage is predetermined to a certain de-
gree by the existence of a minimum number of tasks to be 
performed, and their sequence, it is fair to assume that there 
is considerable freedom to managers while deciding project 
activities. For example, Thomke and Fujimoto (2000) and 
Khurana and Rosenthal (1998) recommend the front load-
ing of activities in a project, i.e. the increase in complexity 
and activities early in the development process, as a way 
of reducing uncertainty and the amount of rework or new 
work to be done later.

Capacity utilization affects the tradeoff between output 
quality (and thus the value created), and throughput. The to-
tal amount of resources available for allocation across stages 
is determined by a budgeting exercise (Chao et al., 2009) 
and is divided among the stages, so that each stage receives 
a fraction of the total. The selection of average complexity 
in any one stage, on the other hand, is not subject to such a 
global constraint. Product portfolio management deals with 
the problem of balancing these resources, complexity and al-
lied uncertainties, even without accounting for screening ef-
fects. Inclusion of screening effects, and balancing resources 
and project task complexity across stages of the pipeline 
introduces time dependence into the portfolio management 
space. 

Accordingly, PPM is a multifaceted problem that reflects the 
dynamics of the product development pipeline, and the un-
derstanding of how decisions variables interact to affect the 
shape of the pipeline (also called the funnel) and its innova-
tion outcomes. It is a normal practice within the portfolio 
analysis literature to convert the joint outcome of allocated 
resources and selected complexity into the value created, 
which is typically measured in terms of net present value 
(NPV) of new-product projects (Cooper et al, op. cit.). The 
trade-offs between rate of value (or NPV) creation at each 
stage that is dictated by the above mentioned decisions and 
throughput of the pipeline needs explicit formulation and 
systematic study. Therefore, the goal of this paper is to pro-
vide policy insights for PPM decision-making by analyzing the 
underlying dynamics and determining which strategy allows 
a higher performance. 

Introduction

New product development (NPD) projects are typically 
managed through a series of screens, or gates, where ideas 
compete for resources. Ideas are carved into projects, and 
these projects are reviewed, and approved or terminated 
through the screening process so that only the best per-
forming projects continue to subsequent stages of design, 
development and testing, and are released into the market 
place (Krishnan and Ulrich 2001; Terwiesch and Ulrich 2009). 
Most large innovative organizations deal with more than one 
NPD project at a time and typically engage in product pipe-
line management (PPM), where a set of active projects are 
evaluated together while they traverse through a sequence 
of such screens.

Some empirical studies have explored the patterns, best 
practices or benchmarks in the managerial decisions con-
cerning PPM (Schmidt et al., 2008). There is considerable 
variation on the way such screening mechanisms are used. 
For instance, in the automotive industry, new platforms, such 
as Chrysler’s mini-vans (e.g. the Plymouth Voyager in 1984) 
or Toyota’s hybrid Prius (1997) are launched in an episodic 
manner. After such launches, the market place expects that 
new models of these products will be launched on a peri-
odic, yearly basis, and it is rare in this industry to screen 
out an entire development project using the conventional 
stage gate process described by Cooper et al. (1998). Other 
industries may either offer more fungible product introduc-
tion opportunities (e.g. software development managers re-
sort to versioning, see Cusumano and Selby, 1995), or may 
be driven by long cycles of development (e.g. pharmaceu-
tical developments may have to screen out concepts sev-
eral years after the initiation of a discovery process based 
on regulatory feedback (Hurtado, 2009) ). We steer away 
from analyzing conventional phase-gate processes that do 
not screen out products, and instead focus on the funnels, 
and especially their fuzzy (uncertain) front ends (Khurana 
and Rosenthal, 1998; Zapata and Cantú, 2008; Jugend and 
Silva, 2012), where products have to go through fundamen-
tally different kinds of assessments across a succession of 
screens that determinate the shape of the innovation funnel. 
In our definition, the shape of the innovation funnel is estab-
lished by the number of projects in play at various phases of 
development awaiting a successive set of screens. Different 
industries consider widely different numbers of innovations 
at each phase for each innovation that is eventually launched 
(Terwiesch and Ulrich, op. cit., Figure 9-3).      

How can managers improve their product pipeline perfor-
mance? Answers to this key strategic question will depend 
on the formulation of the process, associated decision struc-
tures, and the definition of performance, while explicitly re-
flecting elements of resource availability, task complexity, 
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Theory
This section presents the theory used to develop the sys-
tem dynamics model of the product development pipeline 
used in the study. All the definitions presented here are key 
to the understanding of the PPM model formulation. 

The process of product pipeline management has been for-
mulated as a dynamic resource allocation problem that is 
often beset with congestion effects due to resource con-
straints (Reinertsen 1997, Griffin 1997, Cusumano and No-
beoka 1998, Ulrich and Eppinger 2004).  Decision rules for 
PPM have begun to be explored from various viewpoints: 
cycle time implications (Adler et al. 1995); stagewise re-
source allocation (Banerjee and Hopp, 2001). More recently, 
resource allocation insights have been formulated from a 
behavioral viewpoint, in terms of heuristics for resource 
allocation across multiple stages of a pharmaceutical R&D 
process (Gino and Pisano, 2005). 

Allied studies within any one project have demonstrated the 
importance of overlapping (Terwiesch and Loch 1999; Bhui-
yan et al., 2004; Marujo, 2009) and front loading development 
activities (Thomke and Fujimoto, 2000), meaning that more 
time/resources are invested on each project on early stages 
thus reducing uncertainty and subsequent rework.  Thomke 
and Fujimoto’s rationale is based on information exchange 
theory that rewards early exchange of information and prob-
lem solving.  However, the front-loading logic for a portfolio 
of projects differs from its counterpart within a single pro-
ject due to the aggregate considerations of resource alloca-
tion and complexity which are central to the PPM problem. 
The front loading of average complexity means that tasks for 
every project will be more complex and costly. This is a con-
cept similar to the aforementioned one. The front loading of 
global resources, however, is related to the overall capacity 
to move projects to the second stage, and not to the com-
plexity of a single project.  In addition, at the portfolio level 
there is a need to consider the effects of screening thresh-
olds and allied controls (e.g. resource utilization efficiency) 
that are also associated with these decisions.

Implications

A series of propositions or hypotheses to be tested in the 
study is presented on the following subsections, based on 
key structural aspects of PPM and tradeoffs inherent to the 
activity. However a focus must be put on the key implica-
tions from the hypothesis testing process.

First and foremost, it is found that both the allocation of 
resources and the selection of complexity exhibit convexity 
that establishes optimal levels and limits to the advantage 
of front loading across a portfolio of products. This finding 
is not obvious in the sense that in the available empirical 

This PPM problem cannot be solved in closed form (Ander-
son and Morrice, 2006; Browning and Yassine, 2008). Fur-
thermore, the pipeline interactions are difficult to study with 
traditional statistical methods or to anticipate with thought 
processes. A simulation study (Davis et al., 2007) is a par-
ticularly effective approach for tackling this problem because 
a model of portfolio value creation and throughput can be 
formulated to include multiple decision parameters and as-
sociated longitudinal interactions within a process involving 
multiple projects. 

We developed a simulation model of the pipeline manage-
ment problem, and then calibrated and tested it with data 
from a biotech company. The model is designed to deter-
mine guidelines for key simultaneous managerial decisions: 
choosing task complexity, allocating scarce resources and 
adjusting product development capacity. It employs screens 
with quality adjustment mechanisms, which select only those 
projects with higher expected value (NPV). The model al-
lows the effort allocated to projects to be front-loaded in 
terms of average task complexity-- doing more work in an 
early stage to characterize and justify the projects. Because 
such frontloading delays the project’s proceeding to the 
next stage of development, the shape of the pipeline, and 
the backlogs from one stage to the next, will consequently 
change depending on how teams will adjust to the changes 
in workload. The model calculates the overall long-term 
pipeline performance resulting from different combinations 
of decision parameters, in terms of the total expected NPV 
of completed projects. It also provides a mechanism to com-
pute the elasticity of the outcomes with respect to interme-
diate thresholds and managerial choices.

The contributions from our work are three fold. First, we 
establish a simulation-based methodology to assess pipeline 
management and considerations of project throughput and 
quality. Second, we find that both the allocation of resources 
and the selection of complexity exhibit convexity that es-
tablishes limits to the advantage of front loading across a 
portfolio of products, i.e., there is an interior, optimal level 
for these variables that is not on the extreme sides of the 
performance curve. Third, the optimal level of resources and 
project complexity depends on interactions of these vari-
ables along with selected level of screens. We discuss the 
managerial implications, both structural and behavioral, of 
these findings. 

We proceed as follows: §2 presents theory on the pipeline 
management phenomenon.  § 3 operationalizes the theory 
and describes the PPM model. §4 identifies the design of the 
simulation study. §5 contains the statistical analysis of the 
results from the simulation study. Section 6 discusses mana-
gerial implications of these results and limitations. Section 7 
concludes.  
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nominal utilization level, the increase in the value of the pro-
jects as they pass through the gates should be proportionally 
smaller, because the capacity utilization will be above or be-
low its nominal levels (Girotra et al. 2005; Clark and Wheel-
wright, 1993). This trade-off is represented on figure 1.

On the other hand, more projects can be released if the 
teams work more intensively. This suggests a competing hy-
pothesis. 

The capacity adjustment bias, a tendency that managers 
might have while making the capacity adjustment decision, 
affects value creation only in two cases: a) when there is a 
penalty for working more intensively, i.e. the capacity utiliza-
tion versus value creation curve is not flat (in such case it 
becomes advantageous to produce more); and b) when the 
pipeline has an overflow of projects and there are potentially 
high utilization rate(s), above 100%. When there is starvation 
of projects, the target capacity will always be the same (the 
maximum possible), regardless of the direction of the bias. 
In other words, when the maximum capacity is below 100%, 
it doesn’t matter if managers have a bias towards achieving 
nominal capacity (100%) or towards reducing the backlogs 
faster. The target capacities in both cases will be the same. 
Therefore it is proposed that as long as there is a potential 
for high utilization rates (>100%) , an increase in the bias, at 
any one stage, towards reducing backlogs through the ad-
justment of capacity will 1) decrease the total value of the 
projects due to lower value creation, and 2) increase value 
due to higher completion rates. If value creation is constant 
(i.e. no tradeoff for value creation), a bias towards reducing 
backlogs will increase total value creation due to the pos-
sibility of enhancing the pipeline without penalty.

literature (e.g. Thomke and Fujimoto, 2000, Khurana and 
Rosenthal, 1998), front loading is recommended but there 
is no tool to determine exactly how much or up to which 
level it should be implemented. The existence of optimal lev-
els is also not obvious since the problem cannot be solved 
in closed form, i.e. it is an NP hard problem (Anderson and 
Morrice 2006; Browning and Yassine 2008).

Second, the optimal level of resources and project complex-
ity depends on interactions of these variables along with 
selected level of screens. In this study it was found that there 
are many significant interactions in the process, which con-
tributed very significantly to explain the variation on the 
dataset. Such interactions were not previously studied and 
are significant problem faced by managers. When the level of 
one variable is adjusted, the optimal level of other variables 
may change. The simultaneous choice of these variables is 
further complicated by such interactions.

We discuss next how these findings were anticipated (and 
justified) by both physical economical aspects of the PPM 
process.
 
The Utilization – Performance Trade Off 

In a product development pipeline, the available capacity of 
the development teams is adjusted locally in order to either 
adapt to the work demand of each stage of the chain or 
keep the utilization level around its nominal value. There-
fore, we define the capacity utilization bias as a managerial 
tendency to work between these two extremes. The teams 
will work more or less intensively depending on the capacity 
adjustment choice. If more weight is given to the objective of 
achieving the fastest rate to reduce backlogs instead of the 

Figure 1: Relationship between Resource Utilization and NPV Creation Multiplier (Clark and Wheelwright, 1993)  
*the nominal value of capacity utilization is set to be at unity. 
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on the nature of the project portfolio. In the software sec-
tor, usually there are no such restrictions (McCormack et 
al 2001). But for physical technologies in tangible products, 
certain project tasks must follow others based on prece-
dence relationship (Ford and Sterman, 1997), and all cannot 
be performed simultaneously upfront. Such sequencing of 
tasks reduces the average project complexity. Conversely, 
when other types of tasks can be pooled based on queu-
ing considerations (Loch and Terwiesch, 1999) and executed 
within a single stage, the average complexity rises. There are 
also physical reasons for a limit to complexity allocation. Al-
though a firm cannot always control the size of its projects, 
the number of manhours per project is a variable that af-
fects how intensively the teams will have to work, therefore 
it affects capacity utilization.  A longer time per project will 
result in an increase of capacity utilization and/or decrease 
in the number of projects released in the market. There-
fore the relationship between project size and total value 
created should also be concave. Thus, we propose the fol-
lowing hypothesis to complexity allocation: There is a limit 
to the performance gains made by front loading of average 
complexity for a portfolio of projects, while these projects 
traverse across a product development pipeline.

Screening Threshold

 The third set of decisions germane to the shape of the pipe-
line is the level of competition between projects (Terwiesch 
and Ulrich, 2009) and the associated screening threshold. Ar-
guably, the higher the threshold, the lower will be the num-
ber of projects that pass through each of the screens and, 
accordingly, the lower would be the observed performance 
from the resulting set of product innovations. Accordingly, 
we suggest that the performance of the innovation pipeline 
is negatively associated with the screening threshold at each 
stage.

However, the direct effect of screening threshold on the 
performance does not complete the picture. Based on man-
ager’s allocation biases that are informed by the level of the 
reward and allied degree of difficulty (Frederick et al., 2002) 
there is endogeneity in the selection of screening levels and 
the participant’s willingness to allocate resources and select 
the average task complexity. It is clear that depending on the 
selectiveness of the screening process, the optimal alloca-
tion of resources and complexity should change, because 
thresholds affect the shape of the funnel and number of pro-
jects at each stage. Thus, we make the following proposition: 
The optimal level of resource allocation and complexity al-
location is mediated by the level of threshold at any one 
stage of the pipeline. 

Resource Allocation

The market place rewards a steady delivery of projects, 
rather than a lumpy set of entries (Moorthy and PNG, 
1992). Therefore, it is reasonable to assume that a choice 
of resource allocation fractions (basically how to allocate 
people across stages) that balances the pipeline, fine tuning 
the delivery of projects at its end will be preferable. Also, 
from a quantitative viewpoint, the NPV of projects in the 
late stages, being closer to the point of market launch, will 
exceed their early-stage counterpart. These considerations 
suggest that there will be both physical and economic limits 
to frontloading projects based on the need to construct a 
temporally balanced, high performance portfolio. The physi-
cal limits can be explained based on the assumption that the 
relationship between capacity utilization and value created 
in each gate has an inverted U shape; it is intuitive to expect 
that there exists an interior utilization level that maximizes 
firm profit. Utilization affects the dynamics across multiple 
stages in a product development pipeline and managers of 
the NPD pipeline can reallocate resources across stages, 
assigning people to other tasks in an attempt to optimize 
capacity utilization globally. Hence, we offer the following hy-
pothesis to the front loading of resources: There is a limit to 
the gains made by front loading of resources for a portfolio 
of projects, while these projects traverse across a product 
development pipeline. We define resource allocation bias as 
tendency, while making the resource allocation decision, to 
allocate more resources to one stage than to another.
   
Complexity Selection

While it is easy to see why resources should be allocated 
to the front end from a problem-solving perspective for any 
one project (increasing task complexity of the initial phase), 
there is more to this picture (Cooper et al. 1998). All the 
activities in a project cannot be concentrated in the early 
stages.  Indeed, behavioral evidence suggests that pipeline 
managers concentrate their attention on the last stage, due 
to a combination of focusing on recent events and allied 
hero mentality (Repenning et al. 2001).

 We define average complexity as a measure of the num-
ber of, magnitude of and relationship between tasks. This is 
the metric that governs the nominal completion time, for 
a given amount of resources. Therefore, the average num-
ber of man-hours per project at each stage was used as 
a proxy for complexity in the model. Such proxy was also 
used by Yu, Figueiredo and Nascimento (2010).  Indeed, allo-
cation of average complexity for a project, is a dual problem, 
with respect to resource allocation (Browning and Yassine 
2008). However, the decision on how much complexity gets 
allocated to a stage of any one project (a managerial ten-
dency here called the complexity allocation bias) depends 
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Model Description

The dynamics of PPM involve a broad decision context. Any 
model that tries to mimic or reflect such decisions must 
incorporate these key decision processes.  The structure of 
stocks and flows in PPM can be compared to the structure 
of a service supply chain model (Anderson et al. 2005). In 
both situations, the processing flow-time and capacity con-
straints have an impact on the throughput. The PPM problem 
is therefore a special case of service supply chains, where 
some projects are terminated across stages based on their 
NPV. Most firms use multiple gates in their pipelines (Ulrich 
and Eppinger 2004). For parsimony, our model incorporates 
only the first three gates, as shown in figure 2. 

The basic structure and logic of the model are simple; every 
month, a certain number of projects is started and enters 
the pipeline. These projects are developed and screened in 
sequence, before being released into the marketplace. The 
NPVs of the population of projects are tracked, enabling 
managers to decide how many projects will be terminated 
and how much value will be lost due to termination. Val-
ue creation happens while projects are developed at each 
stage, and this value creation depends on how intensively 
the teams are working. Besides deciding on which projects 
will be terminated (i.e., defining a screening threshold (T) or 
minimum allowable NPV for a project to be approved), man-
agers also decide on three variables: the capacity adjustment 
bias (α), the resource allocation across stages (β), and the 
average complexity of the projects (γ). Each of these vari-

The NPD Pipeline Model

This section begins with a description of the NPD pipeline 
model, which defines all the key terms to the understanding 
of the pipeline. A detailed description of the model, with a 
list of equations can be found in Figueiredo and Loiola (2012) 
and Figueiredo and Joglekar (2007). The present study adds 
two variables to the model which were treated as a constant 
in Figueiredo and Souza: The average complexity of projects 
at each stage (measured by man-hours per project) and the 
fraction of resources (Man-hours per month) that are al-
located to each stage (see equations 1 and 2 below and the 
original paper for more details). This section ends with an 
explanation of the calibration and validation processes.

Variable β (the resource allocation fraction) is a value be-
tween one and zero and is multiplied by the nominal capac-
ity at each stage. The sum of β1, β2 and β3 is always equal 
to 100%. Therefore, resources can be allocated according do 
different policies, reflecting on the values of β.

Figure 2:  A Multi Stage Product Development Pipeline
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stages. The dynamic aspect of the pipeline adds complexity 
to the problem, and to the optimization effort.

Calibration

The model was calibrated to the Novartis Innovation Pipe-
line (Reyck et al. 2004). This case study has all the data nec-
essary for the calibration, including NPV values at each stage, 
flows, complexity and resources. The Novartis pipeline has 
four stages, but the first stage (basic research) was excluded 
and only three stages were considered. The pipeline was cali-
brated for a steady state condition, in which value creation is 
maximum and there is a bias towards reducing the backlogs 
(α=1). In the calibration procedure, the following parame-
ters were kept constant, consistent with the data set: starts, 
resource allocation fractions, average Project Complexity 
and Termination Rates. The following output was matched 
by performing an iterative adjustment of the Gumbel funtion 
look up tables, by changing the mean gain and variance, while 
keeping the nominal development times within reasonable 
range: Average backlog in each stage and Average NPV in 
each stage. The calibration achieved a goodness of fit of ±5% 
for all parameters, except the nominal development times.

Model Behavior and validation

Forrester and Senge (1980) suggest three types of tests of 
system dynamics models: (1) structural similarity to the ac-
tual system; (2) reasonable behavior over a wide range of in-
put values; and (3) behavior similarity to actual systems. The 

ables affects capacity utilization (how intensively the teams 
are working) and therefore the value creation, as described 
on section 2. 

The capacity adjustment bias reflects managers’ tendencies 
between either working faster/slower in order to reduce 
the existing backlogs, or working at a constant rate (the best 
or nominal rate) to optimize value creation (see figure 3). 
The resource allocation bias reflects managers’ tendencies 
to allocate more people to work on the initial, mid or final 
stages of the pipeline. Managers also have a bias towards 
allocation of complexity, i.e. they can choose to increase/
decrease the complexity of the projects in any stage of the 
process. The performance variables in the model are the 
total value created (NPV) at the end of the pipeline, value 
creation rates at each stage and respective flows of projects. 
The adoption of NPV as the only performance criteria for 
project screening is a necessary simplification; in most com-
panies, however, more than one factor is used to enable the 
decision to terminate a project, and different factors may be 
used depending on the stage of development of the project. 
For example, a pharmaceutical company might be more con-
cerned with the safety of a substance at the early stages and 
with the manufacturability at later stages.
The PPM problem is structured as a dynamic process in 
the shape of a chain, therefore it is reasonable to assume 
that accumulation and/or starvation might happen in such a 
chain. Depending on the decisions made by managers, pro-
jects may accumulate in early stages, or the later stages may 
starve in case too many projects are terminated in early 

Figure 3:  Stock and Flow Structure of a Typical Stage 
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Adding to these considerations, the model’s behavior is 
consistent with the logics of product pipeline management 
as found in the literature. Also, by looking at figures 4, 5 
and 6, it is easy to see how the shape of the pipeline can 
be determined not only by development time, but also by 
complexity and resource allocation. For example, by front 
loading resources, the backlog of stage 1 is reduced, and 
the backlog of stage 3 is increased, relative to the results of 
the back loading of resources. The opposite effect happens 
when complexity is front loaded. The effect of different con-
figurations of the capacity adjustment bias is not significant 
because in this study the pipeline is not overloaded with 
projects, since the number of projects started is constant 
and balanced. When there was a larger inflow of projects, it 
was found that a bias towards reducing the backlogs in fact 
does reduce their sizes.  Based on the above tests, the model 
is considered useful for analysis of the product pipeline.

model was tested under extreme conditions (see figures 5 
to 7 and the next section) and it behaved well. Our experi-
mental design used a wide range of input values. Model be-
havior remains reasonable through these tests. By basing the 
model on the PPM literature and on service profit chains, 
the model’s structural similarity to PPM as practiced is im-
proved. The data on actual product pipeline management al-
lowed detailed model calibration and behavior comparison. 
The model behaved well in all studies. 

In an attempt to increase external validity, a partial calibra-
tion for a dataset from Merck (Girotra et al. 2004) was re-
peated. In this calibration, only the average NPV values were 
not known, so nominal values were used instead. Similar re-
sults were obtained; the most important difference was that 
all 3 stages had significant parameters for Merck, instead of 
only the first stage for Novartis. The Merck calibration was 
modified by using the termination rates found in Schmidt 
et al (2008) for an industrial setting, and obtained similar 
results once again. It is clear that this study can be repeated 
for many other settings, by making certain assumptions de-
pending on the availability of data. 

Figure 4: Effect of Varying the Resource Allocation Bias

Figure 5: Effect of Varying the Complexity Selection Bias

Figure 6: Effect of Varying the Capacity Utilization Bias

Experimental Design

Linear regressions were used to analyze the simulation data-
set (as in Kleijnen 1995, Anderson et al 2005, Santos and 
Santos 2008). In this section, the specification of a regression 
equation and the design of the numerical experiment are 
presented.
             Recall that the model has been set up with the NPV 
of the projects at the end of the third stage of the pipeline 
as the outcome variable that is shaped by resource alloca-
tion, complexity selection, resource utilization fraction, and 
screening thresholds across the first three stages.  We use 
this set up to specify the following regression equation:
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that higher thresholds for minimum NPV while screening 
projects will reduce the total value created. For the hypoth-
esis related to interaction between variables affecting per-
formance (hypothesis 4B): We expect C17, C18 and C19 to 
significant, which means that interactions are significant and 
the optimal level for one decision variable depends on the 
value of other(s).  

Model Testing

One experimental condition was conducted in order to 
generate data. The condition was created to determine the 
model’s behavior and generate policies in the presence of a 
tradeoff between capacity utilization and value creation.  

The first study for the experimental condition, a.k.a. our 
base case, uses small perturbations to the parameters in the 
calibrated model described in section 3. This study aims to 
test hypotheses 1 through 4.  One sensitivity analysis study 
is added to this base case: we run a scenario where there is 
no screening of projects, i.e. all projects are approved. This 
study represents an extreme conditions test (Forrester and 
Senge, 1980), because potentially high utilization rates are 
achieved, and ceiling effects might come into play in the pipe-
line. 

 The design of the base case uses the nominal value from the 
calibrated model that was described in section 3 as default 
or medium parameters (Mk,K=2). See tables 1 and 2.  The 
nominal value of each decision parameter is then perturbed 
to a higher and a lower setting in order to create variations, 
to create three values (Mk, K=1,3). For example, while al-
locating resources, the total nominal capacity of stages 1, 
2 and 3 remains fixed. However, it can be divided unevenly 
across stages to perturb the variable β That is, if β1 is raised 
by a factor of 5%, while keeping β2 constant, this means that 
stage 3 will proportionally lower amount of resources. Then 
a set of higher and lower values of β1 is selected (Hk and 
Lk, K=1,3) by adding or subtracting 5%. These parameters 
ensure that each segment of the utilization curve is sampled, 
without hitting extreme conditions. The selected complexity, 
i.e. needed number of man-hours per project in each stage is 
represented by decision variable Gamma (γi). The high and 
low conditions are calculated by adding or subtracting 5% 
to βi, 10% to γi and αi and ±0.5 standard deviations of the 
NPVs to the thresholds (Ti). These amounts of perturba-
tions have been selected to span a large range of settings for 
the decision variables, while satisfying the constraints im-
posed by the table function used to calculate NPV creation 
rate based on utilization. For example, an increase of 5% in 
β1 results in an increase of 32% in the capacity of stage I. 

This yields a partial factorial 7x7x7x7 design (see table 3), 
that requires a total of 2401 (i.e. NBase = 2401) simulations.

Here
 i =1 2 3 represents stages of the pipeline
 Cj = Regression coefficients, j=1, j=2…j=19
 V: Total NPV at the end of the third stage of the 
pipeline at the end of planning horizon
   ε: Noise Terms

Decisions

βi :  increase in this parameter enhances resource allocation 
fraction for stages i, such that  (βi >= 0 and β1+ β2+ β3=1) 
γi : Complexity at stage i, such that γi >= 0
αi: Capacity adjustment bias at stage i (0<αi<1), Increasing 
this parameter reduces backlog instead of optimizing capac-
ity utilization. 
Ti: Screening threshold at stage i

This specification is used to test the propositions developed 
in §2 in the following manner. 

All the linear terms of the relations between complexity 
and NPV created, and between resources and NPV created 
should be positive, since it can be shown that if a concave 
quadratic equation has its peak located in a point where X is 
positive (this is such a case, because resources and complex-
ity are equal or more than zero), its linear coefficient must 
be positive. This proof is in the appendix A1.

For the hypothesis regarding resource allocation (hypoth-
esis 1): we expect C1 and C3 to be positive and significant 
and C2 and C4 to be negative and significant. Such a result 
would mean that there is a limit to the gains made by front 
loading of resources, i.e., there is a concave relationship be-
tween allocation of resources and value created. This also 
means that it is possible to optimize such variable. For the 
hypothesis regarding allocation or choice of complexity (hy-
pothesis 2): we expect C5, C7 and C9 to be positive and sig-
nificant and C6, C8 and C10 to be negative and significant. In 
other words, there is a limit to the performance gains made 
by front loading of average complexity, because these coef-
ficients are concave in relation to value created. Therefore 
there is also an optimal level for this variable. For the hy-
pothesis related to managerial bias while adjusting capacity 
(hypothesis 3): there are competing hypotheses. We expect 
C11, C11 and C12 to be significant and positive/negative, 
meaning that an increase in the bias, at any one stage, to-
wards reducing backlogs through the adjustment of capacity 
will either reduce or increase value creation. For the hy-
pothesis regarding thresholds (hypothesis 4A): We expect 
C14, C15 and C16 to be negative and significant, meaning 
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Variable Stage 1 Stage 2 Stage 3
NPV gain rate 3.3839 1.2599 3.1128

Average NPV (MUS$) 82.07 277.74 349.93
Backlog (projects) 37 60 5

Resource Allocation fraction (β) 0.1579 0.3816 0.4605
Complexity (γ) manhours/project* 112000 1082667 5226667

Starts 40 projects/year ±10%
Termination Rates 75% 75% 20%

Table 1: Calibrated Parameters in the Base Case
*Assumed cost of manhour of $75                                            

Table 2:  Flow Parameters the Base Case                                         

Table 3: Experimental Design - Base case (n=2401)
*M=base case values, L=Low values, H=High values                                     

Stage 1 2 3
Flow: Base Case 10.1 2.59 2.146

α ,β γ,T Stage 1 Stage 2 Stage 3
1 M1 M2 M3
2 H1 M2 M3
3 L1 M2 M3
4 M1 H2 M3
5 M1 L2 M3
6 M1 M2 H3
7 M1 M2 L3

Similar designs are repeated for the other studies. We note 
that the sensitivity study does not admit variation in thresh-
olds. That is, NNo_Screens =343. The correlation matrix for 
the regression variables in the base case, is shown in Table 4.

Results
        
Experimental Condition 1: Capacity Utilization vs 
Value Creation Tradeoff

For the base case of condition 1, the regressions that ex-
amine hypotheses 1 through 4 are reported in Table 5. The 
sensitivity analysis results are reported in Table 6.  Models 1 
through 5 (corresponding to columns 1 to 5 respectively) 
examine perturbations to the base case. We only report the 
two most significant interactions. 

We now review the results shown in models 3-5.  Hypoth-
esis 1 deals with diminishing returns on the variable βi. Co-
efficient C1 is positive and significant and C2 is negative and 
significant. . On the other hand, resource allocation for stage 
2 is not significant. This suggests that for the set of base case 
parameters, the queuing physics of the pipeline makes the 
tuning and optimization of the first stage more important 

than that of the other stages. Thus, hypothesis 1 is supported 
for stage 1 in the base case.

Hypothesis 2 deals with diminishing returns on the variable 
γi. Coefficient C5 is positive and significant and C6 is nega-
tive and significant. Thus, this hypothesis is supported for 
stage 1 in the base case. Only the coefficients for the first 
stage are significant.

Hypothesis 3 deals with the utilization – performance trade 
off. This hypothesis is not supported in the base case, be-
cause coefficients C11, C12 and C13 are not significant. 
However, coefficients C12 and C13 were significant on the 
sensitivity analysis study. The deviation of results from the 
hypothesized pattern of behavior is further discussed in §5.2.
Hypothesis 4A and 4B are related to the effect of the 
screening thresholds. Hypothesis 4A is supported because 
coefficients C14, C15 and C16 are significant and negative 
as expected. That is, higher thresholds result in more ter-
mination and value loss, as expected. Hypothesis 4B is par-
tially confirmed: the optimal level of resource allocation is 
mediated by the level of threshold at the first stage of the 
pipeline. The level of complexity, on the other hand, is not 
mediated by the threshold since this interaction was not 
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T1 T2 T3 Al-
pha1

Al-
pha2

Al-
pha3

Gam-
ma1

Gam-
ma2

Gam-
ma3 Beta1 Beta2 Beta1sq Beta2sq Gam-

ma1sq
Gam-
ma2sq

Gam-
ma3sq

T1 1
T2 .000 1
T3 .000 .000 1
Alpha1 .000 .000 .000 1
Alpha2 .000 .000 .000 .000 1
Alpha3 .000 .000 .000 .000 .000 1
Gamma1 .000 .000 .000 .000 .000 .000 1
Gamma2 .000 .000 .000 .000 .000 .000 .000 1
Gamma3 .000 .000 .000 .000 .000 .000 .000 .000 1
Beta1 .000 .000 .000 .000 .000 .000 .000 .000 .000 1
Beta2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .200** 1
Beta1sq .000 .000 .000 .000 .000 .000 .000 .000 .000 .994** .199** 1
Beta2sq .000 .000 .000 .000 .000 .000 .000 .000 .000 .200** .999** .195** 1
Gamma1sq .000 .000 .000 .000 .000 .000 .999** .000 .000 .000 .000 .000 .000 1
Gamma2sq .000 .000 .000 .000 .000 .000 .000 .999** .000 .000 .000 .000 .000 -.001 1

Gamma3sq .000 .000 .000 .000 .000 .000 .000 .000 .999** .000 .000 .000 .000 -.001 -.001 1

Table 4: Correlations Matrix – Base Case

Variable Treatment 1 2 3 4 5
6 W/O

Screening

Constant
α1(Cap. Adjustment Bias)

α2
2712.26*

(60.39)

α3
1405.133*

(60.39)

β1 (Front Loaded Resource)
n/a

-1864.89

70085.237* 70085.237* 103409.699* 27639.865* 50115.406*

-1860.85 -6541.69 -3392.77 (2495.15)

β1 Squared
n/a

-5882.17

-212751.85* -212751.85* -212751.85* -212751.85* -150219.294*

-5869.45 -5836.24 -5621.27 (7870.12)

β2 (Mid Loaded Resource) n/a

β2 Squared n/a

γ1 (Front Loaded Complexity) n/a
n/a

-0.028

0.079* 0.079*

-0.028

γ1  Squared n/a
n/a

0

-3.5E-7* -3.501E-7* -3.501E-7*

0 0

γ2 (Mid Loaded Complex.) n/a n/a

γ2   Squared n/a n/a

γ3(Back Loaded Complex.) n/a n/a

γ3 Squared n/a n/a
T1

-85.52

-566.988* -566.988* -566.988* 1108.786* -566.988* N/A

-60.18 -60.05 -321.13 -57.51
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Table 5: Results –Base Case, Condition 2
* P<0.01,  ** P<0.05

significant. Other interactions are significant, signaling that 
the effect of one variable on performance usually depends 
on the value of other variables. For instance, β1γ1 was sig-
nificant, which means that the optimal level of resources at 
the first stage depends on the chosen level of complexity. 

Sensitivity Study: 

The regression results are shown in column 6 for the ad-
ditional study: no screening (100% of approval).

  Model 6 admits extreme conditions. Recall from 
the base case that screening drowns out the capacity uti-
lization bias towards minimizing the backlogs (i.e. H3 is 
not supported) at any stage. When there is no screening 
of projects, as shown in model 6, coefficients C12 and C13 
become significant and positive, but C11 is not significant. 
This means that the capacity utilization bias is significant at 
stage 2 and 3.  This “bottleneck shift” happens because when 
there is no termination, stages 2 and 3 become overloaded 
with projects with high utilization rates. We examine Table 7 
to verify this. This table reports average flow rates for each 
stage, normalized with respect to the flow rates in the base 
case. Values above unity indicate a high utilization, and com-

parison across stages shows if the pipeline is balanced, on 
average.  Thus, the backlog reduction bias makes a difference 
to the location of bottlenecks when no screens are place. 

Discussion 

We offer the following caveat before discussing the results. 
While the model structure is generic, the outcomes are cru-
cially dependent on the nominal parameters, and on the key 
tradeoff between capacity utilization and value creation. We 
have run partial model tests on another data set from Mer-
ck (Girotra et al. 2004), and replicated the major findings. 
These results are available from the authors upon request. 
We have also used the model structure for an industrial set-
ting (Schmidt et al. 2008), and in this instance the screen-
ing parameters yield results that are closer to our extreme 
condition test (no screening). We limit our discussion to the 
findings from the Novartis calibrated model. 

The discussions for the experimental condition are grouped 
into a) the need to avoid blockages at the front end, i.e., how 
the front end can congest or starve later stages, and affect 
value creation as explained in section 3.1;   b) pointers for 
pipeline design; and c) the potential for shifting bottlenecks, 
i.e. when managerial policies can change the flow rates of 
projects at different stages, affecting value creation and yield-
ing different results in terms of which variables play a larger 
role in determining value creation

Avoiding Blockages in the Front End

The structure of the screening problem is like a queue with 
built in quality adjustment mechanisms. In such a queue, the 
front end can block the next stage. NPD literature recog-
nizes the importance of the “fuzzy front end” (Khurana and 

Stage Study: Without 
Screening

1 3.98
2 15.42
3 18.63

Table 7: Average Flow Rates during Sensitivity Analysis (Normal-
ized WRT Base Case Flow Rates), for condition 2

T2

-67.52

-695.05* -695.050* -695.05* -695.050* -695.050* N/A

-47.51 -47.41 -47.14 -45.4
T3

(-16.34)

-207.009* -207.009* -207.009* -207.009* -207.009* N/A

-11.5 -11.474 -11.41 -10.99

T1β1 n/a n/a
n/a

-1998.27

-10612.89*
n/a

β1γ1 n/a n/a n/a
n/a

-0.026

0.379*

Adj. R2 0.113 0.561 0.562 0.567 0.599 0.907

F test and P value
51.745

0.000

307.183

0.000

193.845

0.000

186.184

0.000

211.623

0.000

257.604

0.000
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Screening and Starting, Value Creation and Screen-
ing Policies Shift Bottlenecks

Results from models 3-5 and 6, show that the PPM prob-
lem is not a conventional queuing problem, in the sense that 
managers are more interested in the value of the through-
put, rather than just the waiting time. Moreover, there are 
two key state variables that co-flow (Sterman 2000): backlog 
and the total value of the portfolio at any one stage. In this 
structure, either the absence or the level of screens can shift 
the completion rates as shown in Table 7. Managerially, the 
implication for such shift implies that there is need to track 
the product resource allocation, complexity and NPV crea-
tion rates by stages. These data can be use to balance the 
pipeline and to change the screening levels endogenously if 
the pipeline is not balanced. 

Another important effect of dynamics deals with the local 
biases captured in terms of the local capacity adjustment 
parameter (αi). In the case where there was no screening, 
potentially high capacity utilization are reached in stages 2 
and 3, and the policy of working more intensively to reduce 
the backlogs is the best choice. 

Conclusion

This study develops a set of hypotheses on the shaping and 
dynamics of the product development pipeline. A model is 
developed to assess pipeline management considerations of 
project throughput and quality, and data by means of simula-
tion.  The model is calibrated with data from a pharmaceuti-
cal setting. We find that the allocation of resources and the 
task complexity exhibit convexity that establishes optimiz-
ability and limits to the advantage of front loading across 
a portfolio of products. The optimal level of resources and 
project complexity depends on interactions of these varia-
bles along with selected level of screens and other variables.

Ours is a highly stylized model that comes with several limi-
tations. For instance, we do not account for dependencies 
among projects, such as sharing of resources and sub-ad-
ditive pay-offs. We have shown the model set up to port-
folio managers in the bio-tech industry. They have pointed 
out that the model depends crucially upon the availability 
of reliable data on NPV estimation, and allied value creation 
rates, especially early in the pipeline. A second limitation is 
the manner in which some firms handle the idea generation 
process and define projects.  Complexity in such setting may 
not be selected in an independent manner – certain projects 
must be lumped together while others must follow set se-
quences, and yet other set of tasks are viewed as platforms 
or may involve rework. Our model is aggregate and does not 
account for these effects. Moreover, shared resources affect 
the relationship between development costs and project de-

Rosenthal 1997) and recommends a front loading strategy 
(Thomke and Fujimoto 2000) for a development process. 
These NPD studies have been empirical in their orientation 
and based on these observations, their authors argue for 
the need to focus on the front end owing either to the high 
amount of uncertainty or to the ability to generate early 
information. Consistent with these NPD findings (which re-
fer to single projects), but based on pipeline management 
and throughput-quality tradeoff considerations, our analy-
sis shows that management of “front end,” i.e. stage 1, is 
important in governing the overall pipeline performance. 
Contrary to existing practices on multiproduct management 
(Repenning et al. 2001), the management of the fuzzy front 
end matters more to long term performance than trying to 
focus on the late stages of the pipeline. 

Accounting for Convexity and Interactions during 
Pipeline Design

Confirmations of hypotheses 1 and 2 indicate that front 
loading of resources and average complexity selection in 
stage 1 are jointly concave in respect to pipeline perfor-
mance. This means that these variables are optimizable and 
there are diminishing returns for them, as explained in sec-
tion 2. Moreover, the results are dependent on the choice of 
thresholds and their interaction with the resources in stage 
1 (as indicated by the confirmation of hypotheses 4). A man-
agerial implication of these results is: when endowed with all 
the data, managers can fine tune the performance of their 
respective pipeline by following our procedure. Managers 
should be cognizant of the interactions between resources, 
complexity and thresholds, particularly at the front end of 
the pipeline. Such interactions are not accounted for in con-
ventional portfolio analysis (Terwiesch and Ulrich 2009). The 
significance of interactions show that it is important to fine 
tune the pipeline in a consistent, holistic manner, because a 
change in one of the variables must be followed by a change 
in others, to account for the modification in the utilization 
rate and consequently in the value created. If one variable is 
adjusted, it can change the optimal level of others.

These findings also amplify the need for research on formal 
models for the pipeline outcome at any one stage, in terms 
of resources, complexity of screening threshold, particularly 
when that stage is the bottleneck.  Similarly, the behavioral 
implications of the findings in terms of the propensity of 
an individual team at any one stage to pick higher or lower 
complexity, when given a fixed amount of resource, and giv-
en the historical probability of getting through a particular 
screen. We leave both these aspects as items for follow on 
work.
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velopment time (Girotra et al. 2005). Sub-additive pay-offs 
occur when a firm launches many products that are related 
(such as derivatives of a product family), but could generate 
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Appendix

Linear term of the quadratic equations.
If performance is a quadratic equation of a variable x (com-
plexity or resources) :
Value Created = Ax2+Bx+C (where A is negative and x is 
positive).
In the optimal point, where performance is maximum, we 
have:
0=2Ax+B so B=-2Ax. But we know that A<0 and x>0 at this 
point, therefore B>0.
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