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The major factor that drives a protein toward collapse and folding is the hydrophobic
effect. At the folding process a hydrophobic core is shielded by the solvent-accessible
surface area of the protein. We study the behavior of the numbers in 5526 protein
structures present in the Brookhaven Protein Data Bank. The first digit of mass, volume,
average radius and solvent-accessible surface area are measured independently and we
observe that most of these geometric observables obey the Newcomb–Benford law. That
is volume, mass and average radius obey the Newcomb–Benford law. Nevertheless, the
digits of the solvent-accessible surface area do not agree with the Newcomb–Benford
law. The present findings indicate that the hydrophobic effect is responsible for the
anomalous first digit behavior of solvent-accessible surface areas.
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1. Introduction

Proteins are involved directly or indirectly in all biological processes, and their

functions range from catalysis of chemical reactions to the maintenance of the

chemical potentials across cell membranes. They are synthesized on ribosomes as

linear chains of amino acids in a specific order from information encoded within the

cellular DNA. To function, it is necessary for these chains to fold into the unique

native three-dimensional structure characteristic of each protein. This involves a

complex molecular recognition phenomenon that depends on the cooperative ac-

tion of many relatively weak nonbonded interactions. As the number of possible

conformations for a polypeptide chain is astronomically large, a systematic search

to find the native (lowest energy) structure would require an almost infinite length of
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time. Recently, significant progress has been made towards solving this problem, the

so-called “Levinthal paradox”1 and obtaining an understanding of the mechanism

of folding.2–7 The new insights have come about through advances in experimen-

tal studies8–17 and theoretical approaches that simulate the folding process with

simplified models in different contexts.18–31

Protein folding is driven by hydrophobic forces.32 Lattman and Rose33 ana-

lyzed globular proteins and concluded that the native fold determines the packing

but packing does not determine the native fold. This view is corroborated by the

widespread occurrence of protein families whose members assume the same fold

without having a sequence similarity. Evidently, there are a large number of ways

in which the internal residues can pack together efficiently. As a consequence of

steric constraints in compact polymers, helical and sheets structures appear.2,18

Exhaustive simulations of the conformations indicate that the proportion of he-

lices and sheets increases dramatically with the number of intrachain contacts.32

Recently, the fractal dimension of proteins was analyzed34,28,30 and it is observed

that this type of biological polymers pack like random spheres in the percolation

threshold.

Several aspects of the protein folding process were examined recently. The cur-

rent “new” view3,16,18,19 is that proteins are able to find their native states in the

observed time because a bias in their energy surface reduces the number of con-

figurations that are sampled in the folding process,5,6 relative to the astronomic

number envisaged in the Levinthal paradox.1 Equally important, the transition

region, from which folding to the native state is fast, includes a large number of

configurations.19 A focus on the overall energy or free energy surface (the “energy

landscape”) replaces the specific folding pathways suggested by Levinthal1 with a

distribution of the folding trajectories over multiple pathways. Although experi-

mental data have provided specific information on no more than a few competing

pathways,12 each of these may well involve broad ensembles of structures except in

the neighborhood of the native state. For instance, the folding funnel theory3 pro-

poses to describe the thermodynamics and kinetic behavior of the transformation

of unfolded molecule to the native state, from the number of native contacts. The

folding funnel theory shows that any polypeptide chain explores the folding routes

toward the native structure through intermediates consisting of populations of par-

tially folded species whose number decrease as the protein navigates down to the

minimum of the energy landscape.3 In this sense, there are many different ways for

the collapsed globule to reach the native state, in accordance with the new view of

protein folding. It thus appears that even for small α-helical proteins a wide range

of mechanisms that encompass both the “old” and “new” views are possible.5,6 On

the other hand, if another set of parameters are used in the molecular dynamics, a

few number of states are sufficient for one structure to collapse and fold into the

native one.

In this paper we are mainly interested in investigating the geometric character-

istics of 5526 different protein chains deposited in the Brookhaven Protein Data
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Bank. Our strategy is to measure solvent-accessible surface area, average radius

and mass of each protein chain. These intrinsic characteristics of the protein struc-

tures are responsible for the explanation of several aspects of those molecules, like

the high compactness of those molecules obtained by fractal strategies.34,28,30 We

also measure the solvent-accessible surface area as function of the number of amino

acids.

2. Newcomb Benford Law

We study the behavior of the numbers in the geometric observable variables by

using the Newcomb–Benford law. Newcomb–Benford law, also known as the Law

of Anomalous Numbers, has been known for a long time. It was first proposed by

the Canadian born astronomer and mathematician Simon Newcomb in 188135 and

popularized 57 years later by the physicist Frank Benford.36 In its general form

the law specifies that for any base b > 1, Prob(mantissa(base b) ≤ t/b) = logb t

for all t ∈ [1, b). As a direct consequence for base 10 systems it implies, somewhat

unexpectedly, that

Prob(first significant digit d) = log10

(

1 +
1

d

)

(1)

where d = 1, 2, . . . , 9 are the first significant digit.

Many explanations have been put forward for Newcomb–Benford’s law and the

interested reader is referred to Refs. 37–42. It has been noted by these authors

that base invariance, scale invariance, geometric laws and random samples from

random distributions all give rise to this first digit phenomenon. Reference 43 ex-

amine survival distributions that obey Newcomb–Benford law and they observe

that increasing the value of the shape parameter in these distributions usually give

a better fit to the law. Reference 44 examines the X-ray of astrophysical sources

and observes that these objects obey the Newcomb–Benford law, presenting long

tail distributions.

3. Results

We recall that this analysis was carried out over geometric characteristic aspects

of 5526 protein chains deposited in the Brookhaven Protein Data Bank (PDB). All

5526 protein chains possess known structure with well-refined and high-resolution

proteins (resolution lower than 2.0 Å). Finally, these same protein chains were used

to measure the mass-size exponent28 and the average packing density.30

Figure 1 shows the first digit behavior of protein-chain masses. Thus, as a con-

sequence of application of Newcomb–Benford law, this analysis (Fig. 1) shows that

the protein masses are not Gaussian distributed for Gaussian distributions do not

follow Newcomb–Benford distribution. As the protein volume is proportional to the

protein mass, and these two variables have the same fractal dimension (V ∝ Rδ=2.47
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Fig. 1. First digits from 5526 mass of proteins (light gray) and Newcomb–Benford law (light
gray). We recall that the p-value = 0.25.
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Fig. 2. First digits from the average radius (light gray) and Newcomb–Benford law (gray). We
recall that the p-value = 0.04 for this data.

and M ∝ Rδ=2.47),28,34 we conclude that protein volume also follows the Newcomb–

Benford law.

Again, we notice that the first digit of the average radius of the sample of

5526 protein chains, as shown in Fig. 2 follows Newcomb–Benford law.

In order to extend our analysis, we look into the behavior, regarding Newcomb–

Benford law, of the number of amino acids and solvent-accessible surface area of

protein chains. The concept of accessible surface area was proposed by the solvent-

accessible surface model, proposed by Lee and Richards45 and it has found many

applications in the study of proteins.46–53 In this sense, the outer surface of a

protein molecule can be identified by using ideas of Lee and Richards45 on rolling

a watersized probe sphere over a molecule. The surface of a macromolecule can be

defined to be the part of the molecule that is accessible to solvent. The solvent
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molecule (water) is represented by a sphere of radius 1.4–1.7 Å, called the probe

sphere.

The solvent-excluded volume is that volume of space that the probe is excluded

from by collisions with the atoms of the molecule. This volume is bounded by

the molecular surface. All surface and volume methods have a dependence on fac-

tors such as atomic radii, the probe radius, the quality of atomic coordinates, and

whether explicit hydrogen atoms have been included. For protein and nucleic acid

molecules, the hydrogen atom positions are generally not known, and heavy atoms

with hydrogens are approximated by a single sphere, whose van der Waals radius

is augmented by one- to three-tenths of Å. Of course, all molecules have thermal

motions, which are not modeled by these static, geometrical methods. The acces-

sible surface is the trace of the probe sphere center as it rolls over the molecule

of interest. The contact surface is that part of the van der Waals surface of the

atom that can be touched by a probe sphere. The re-entrant surface is the inward

facing part of the probe sphere as it is touching more than one atom. Together,

the contact surface and the re-entrant surface form a continuous sheet called the

molecular surface.

Thus, the outermost atoms can be represented as atomic spheres having the

appropriate van der Waals radii (r = 1.4 Å). The solvent-accessible molecule is

enclosed by the surface swept out by the center of the probe ball spheres. In this

case, the protein surface is defined by the sum of the van der Waals radii of the

outermost atoms plus the solvent probe spheres.

The analysis was performed according to the method proposed by Richards.47

We measure the solvent-accessible surface area of 1825 protein chains. In Fig. 3 we

can see the first digit behavior of these solvent-accessible surface areas and number

Fig. 3. First digits from the solvent-accessible surface area (light gray) and Newcomb–Benford
law (gray), where the p-values = 0.
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of amino acids. It is clear that there are large discrepancies with respect to the

Newcomb–Benford law.

4. Discussions

This is a novel methodology to study proteins. The obtained results for geometric

properties of proteins show that mass, volume and radius have a nonhomogeneous

structure, which are distributed over the geometry. Furthermore, different regions

in these variables present similar profiles, when they are mapped using different

scales.7,28,30 Different systems present this statistically self-similar behavior.

The fact that the solvent-accessible surface area is in disagreement with the

Newcomb–Benford law is in itself very interesting. Usually, measures of area or

indeed any geometric variables follow this law. Analyzing the solvent-accessible

surface area we notice that if the packing of amino acid residues is based on a coarse-

grained scale,54 it is possible to approximate two-thirds of the protein packing as a

fcc geometry on this coarse-grained scale. The remaining one-third refers to residues

of the accessible surface area that are more randomly packed.54 These randomly

packed amino acid residues compose the accessible surface area and they directly

interact with the water-solvent first shell.

In summary, we investigate geometric characteristics of protein chains. We con-

clude that most geometric aspects of proteins follow Newcomb–Benford law. The

main exceptions are solvent-accessible surface areas that are in disagreement with

the Newcomb–Benford law. The solvent-accessible surface area directly interact

with the dipole potential from the water-solvent first shell. As this interaction is

represented by a sphere of radius 1.4 Å, re-entrant surfaces below 1.4 Å are ne-

glected due to these voids in area do not have a biophysical sense if R < 1.4 Å.

This interaction can supply an explanation as to why the surface area is in disagree-

ment with Newcomb–Benford law. We recall that in the bulk some other potentials

are present, e.g. Coulomb and Lennard–Jones ones. Then, this result leads to pro-

pose that hydrophobicity changes the accessibility of the surface area. Therefore

hydrophobic effects seem to be responsible for the Newcomb–Benford law failure to

apply to the solvent-accessible surface area.

Finally, we study globular proteins and these structures can be composed for one

protein chain or more chains. In this paper we analyzed proteins with one monomer

and protein chains of the other cases (dimer, trimer, etc.) only. Nevertheless, this

result can be generalized to proteins independently of number of monomers.
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