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a b s t r a c t

We propose in this paper to establish a well-defined relationship between αDFA (the long
range auto-correlation exponent) and λDCCA (the long range cross-correlation exponent),
respectively described by the DFA and DCCA methods. This relationship will be accom-
plished theoretically by differentiating the DCCA cross-correlation coefficient, ρDCCA(n).
Also, for some specific times series, we apply this theory in order to establish its validity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades the study of complex systems has become increasingly important. These systems are studied in many
areas of the natural sciences, mathematics, and the social sciences [1–4]. Complex systems have nonlinear behavior, and
can be studied by taking into account the properties of fractals [4], such as self-affinity. If, for example, in a given time
series {y(i)} [5] self-affinity appears, then long range power-law correlations are present [6–10]. This makes the study of
complex systems very interesting, because it is possible to identify a universality in different kinds of problems [11,12]. It is
known that, in the real world, data are highly nonstationary [13], andmany conventional methods of analysis are not suited
for nonstationary time series. To address this problem and quantify the long range power-law correlations embedded in a
nonstationary time series, themethod of detrended fluctuation analysis (DFA) was proposed [14]. The DFAmethod provides
a relationship between FDFA(n) (root mean square fluctuation) and the time scale n, characterized for a power-law:

FDFA(n) ∝ nα. (1)

The scaling exponent α is a self-affinity parameter, representing the long range power-law auto-correlation properties of
the time series. If the signal has only short-range correlations (or no correlations at all), α = 0.5. On the other hand, if
α < 0.5, the correlations in the signal are antipersistent, and if α > 0.5, the correlations in the signal are persistent.

Furthermore, many observables can be measured and recorded simultaneously, at successive time intervals, forming
time series with the same length N [5]. For example, if we have two time series {y1(i)} and {y2(i)}, the analysis of the
cross-correlation between these time series can be applied. In this case, we can apply a generalization of the DFA method,
called the method of detrended cross-correlation analysis (DCCA) [15], to study the long range cross-correlations in the
presence of nonstationarity [16]. Thus, given two long range cross-correlated time series, we compute the integrated signals
R1(k) ≡

k
i=1 y1(i) and R2(k) ≡

k
i=1 y2(i), where k = 1, . . . ,N . Next, we divide the entire time series into (N − n)
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overlapping boxes, each containing (n + 1) values. For both time series, in each box that starts at i and ends at i + n, we
define the local trend,R1,i(k) andR2,i(k)(i ≤ k ≤ i + n), to be the ordinate of a linear least-squares fit. We define the
detrended walk as the difference between the original walk and the local trend. Next, we calculate the covariance of the
residuals in each box f 2DCCA(n, i) ≡ 1/(n + 1)

i+n
k=i(R1(k) − R1,i(k))(R2(k) − R2,i(k)). Finally, the detrended covariance

function is calculated by summing over all overlapping (N − n) boxes of size n,

F 2
DCCA(n) ≡ (N − n)−1

N−n
i=1

f 2DCCA(n, i). (2)

If self-affinity appears, then a power-law exists in the cross-correlations, in other words,

F 2
DCCA(n) ∼ n2λ, (3)

where λ is the long range power-law cross-correlation exponent. Supposing (R1(k) = R2(k)), the detrended covariance
F 2
DCCA(n) reduces to the detrended variance F 2

DFA(n) used in the DFA method. According to Podobnik and Stanley [15], in
general, λ tends to be the mean of DFA exponents, e.g.,

λ ≈
(α1 + α2)

2
. (4)

The exponentλ quantifies the long range power-law correlations and also identifies seasonality [17]. But,λdoes not quantify
the level of cross-correlations [22], and there is no clear relationship between λ and α [18–21].

Wewill show in this paper that it is possible to derive a clear relationship between α and λ if we employ the DCCA cross-
correlation coefficient ρDCCA(n) [22]. For this purpose, the remainder of the present paper has the following structure: In
Section 2, there is a brief discussion about the DCCA cross-correlation and its theoretical implementation; Section 3 presents
our data, simulations, and results; we close in Section 4 with our conclusions.

2. Theoretical implementation

Below, we introduce the DCCA cross-correlation coefficient ρDCCA(n) [22]. The cross-correlation coefficient was created
in order to quantify the level of cross-correlation between nonstationary time series. The DCCA cross-correlation coefficient
is defined as the ratio between the detrended covariance function F 2

DCCA and the detrended variance function FDFA of {y1(i)}
and {y2(i)}, i.e.,

ρDCCA(n) ≡
F 2
DCCA(n)

FDFA1(n) FDFA2(n)
. (5)

In this way, Eq. (5) leads us to a new scale of cross-correlation in nonstationary time series. The value of ρDCCA(n) ranges
between −1 ≤ ρDCCA(n) ≤ 1 [22,23]. A value of ρDCCA(n) = 0 means there is no cross-correlation, and it splits the level of
cross-correlation between the positive and the negative cases (see Table 1 in Ref. [22]). The detrended coefficient ρDCCA(n)
has been tested on simulated and real time series [22,24]. In order to test whether ρDCCA(n) can be considered statistically
significant or not, a statistical test was proposed by [23]. This test was based in the null hypothesis, i.e., assuming that the
time series are independent and identically distributed random variables (i.i.d.), with α1 = α2 = 0.5. As a result, with
95% of confidence level, this test determines the range within which the cross-correlations can be considered statistically
significant.

Now, based on the assumption that there is no clear relation between λ and α, and with the particularity that the
detrended cross-correlation coefficient ρDCCA(n) is a dimensionless coefficient, then we will now propose to derive a well-
defined relationship between α and λ. This relationship will be applied to two nonstationary time series with long range
power-law auto-correlations and with long range power-law cross-correlations,

FDFA1(n) = K1nα1 , FDFA2(n) = K2nα2 , (6)

and

F 2
DCCA(n) = K3n2λ. (7)

K1, K2, and K3 are nonzero constants. Thus, from Eqs. (5)–(7), we have

ρDCCA(n) = Kn2λ−α1−α2 , (8)

with K ≡
K3

K1K2
.

Setting y ≡ log10 ρDCCA(n) and x ≡ log10(n), then from Eq. (8),

dy
dx

= 2λ − α1 − α2. (9)
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Fig. 1. (a) Detrended variance, FDFA , and detrended covariance, FDCCA , as functions of n (time lag), for two time series generated by ARFIMA processes with
ρ1 = 0.1 (◦), ρ2 = 0.4 (�), andW = 1.0. In this ARFIMA processes both time series, {y1} and {y2}, share the same i.i.d. Gaussian process ε1,i = ε2,i . A long
range power-law auto-correlation, FDFA(n) ∼ nα , and long range power-law cross-correlations, FDCCA(n) ∼ nλ , are generated. (b) DCCA cross-correlation
coefficient ρDCCA × n. Continuous line represents the linear adjust, dy/dx, with R = 0.99, sd = 0.02, and pvalue < 0.0001.

Therefore, the goal of this paper is establish, using Eq. (9), a clear relationship between α1, α2, and λ, via differentiation of
ρDCCA. Looking at Eq. (9), we can see three possibilities [25]:

λ = (α1 + α2)/2,

λ < (α1 + α2)/2, (10)

and

λ > (α1 + α2)/2.

Looking at Eq. (8), we can see that, in the limit of n → ∞, then 1/ log10(n) → 0 (very slow decay). Consequently
λ u (a1 + a2)/2, because (log10 ρDCCA − log10 K)/ log10(n) → 0.

In order to verify these possibilities, we consider here two important cases:

(a) dy
dx = 0, with λ = (α1 + α2)/2, which is the typical case;

(b) dy
dx = ξ (ξ ∈ R). In this case, λ = (ξ + α1 + α2)/2, or λ ≠ (α1 + α2)/2.

To test this assumption, listed in items (a) and (b), we propose to analyze some nonstationary time series. This analysis will
be done on both simulated and real-world time series.

3. Data and results

We start by treating two times serieswith long range power-law cross-correlations, using the ARFIMAprocess [26,27,29].
These time series are independent and uncorrelated, with DFA exponents α1 = α2 = 0.5 [30]. In the ARFIMA process each
variable depends not only on its own past, but also on the past values of the other variable, e.g.,

y1,i = W
∞
n=1

an(ρ1)y1,i−n + (1 − W )

∞
n=1

an(ρ2)y2,i−n + ε1,i,

y2,i = (1 − W )

∞
n=1

an(ρ1)y1,i−n + W
∞
n=1

an(ρ2)y2,i−n + ε2,i, (11)

and from this process we generate two new time series. In this process ε1,i and ε2,i denote two independent and identically
distributed (i.i.d.) Gaussian variables with zero mean and unit variance, an(ρ) are statistical weights defined by an(ρ) =

Γ (n − ρ)/(Γ (−ρ)Γ (1 + n)), where Γ denotes the Gamma function. ρ are parameters ranging from −0.5 to 0.5, related
to the DFA exponent, α = 0.5 + ρ, and W is a free parameter ranging from 0.5 to 1.0 and controlling the strength of the
power-law cross-correlations between {y1(i)} and {y2(i)}.
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Fig. 2. (a) Detrended variance FDFA(n) and detrended covariance, FDCCA(n) as functions of n (time lag) for Dow Jones {y1} and NASDAQ {y2} differences in
closing prices adjusted for dividends and splits, recorded daily between February 5, 1971 and December 9, 2010. (b) This figure represent the log× log plot
of ρDCCA × n. The continuous line represents the linear adjust, dy/dx, with R = 0.99, sd = 0.02, and pvalue < 0.0001.

As our first test, we propose to analyze the ARFIMA process where both time series share the same i.i.d. Gaussian process
ε1,i = ε2,i with W = 1.0, see Ref. [28] Appendix A. Podobnik et al. find that these time series are long range power-law
cross-correlated, where the scaling cross-correlations exponent λ is equal to the average of the α exponents. These results
are also found numerically in Ref. [15]. Using this two-component ARFIMA process with ρ1 = 0.1, ρ2 = 0.4, and ε1,i = ε2,i,
long range cross-correlations are generated (see Fig. 1). As a result of this process, Fig. 1(a), presents the detrended variance,
FDFA(n), and the detrended covariance, FDCCA(n), as functions of n. This process can be fitted by power laws, FDFA(n) ∝ nα and
FDCCA(n) ∝ nλ, with scaling exponents α1 = 0.58, α2 = 0.88, and λ = 0.73. In this figure we can see that λ =

α1+α2
2 (the

average of the α exponents). Fig. 1(b) shows the detrended cross-correlation coefficient ρDCCA(n) in log× log plot to present
the application of Eq. (9). We can see that dy

dx ≃ 0 (continuous line), and this illustrates the expected relationship between
the exponents: λ =

α1+α2
2 . To test a real-world case of cross-correlation, with dy

dx = 0 and λ =
α1+α2

2 , we introduce now
an empirical application. We choose the time series of some stock markets indexes, because these have been extensively
studied [31–34]. Our choice was the study the cross-correlation between the Dow Jones and the NASDAQ, for differences in
adjusted closing prices. The data was collected daily over the period between February 5, 1971 and December 9, 2010 [35].
As expected, we find power-law auto-correlations, FDFA(n) ∝ nα , with αDJ = 0.46 (◦) and αNQ = 0.54 (�), as well as power-
law cross-correlations, FDCCA(n) ∝ nλ, with λ = 0.49 (×) (see Fig. 2(a)). As we can see, ⟨α⟩ = 0.49 has the same value of λ.
Fig. 2(b) illustrates the expected relationship between the exponents, because dy

dx ≈ 0.
Now to test the case where λ ≠ (α1 + α2)/2, an ARFIMA process was generated with W = 0.85, ρ1 = 0.1 (time series

1), ρ2 = 0.4 (time series 2), and ε1,i ≠ ε2,i. The results for this simulated case are in Fig. 3.
We can see, Fig. 3(a), that FDFA(n) ∝ nα with α1 = 0.62 (◦) and α2 = 0.72 (�), for time series 1 and 2. Also, we can see

that FDCCA(n) ∝ nλ, with λ = 0.86 (×). But, the cross-correlation is not perfect for this ARFIMA process [22] (see Fig. 3(b)),
and λ ≠ (α1 + α2)/2. However, as we can see, dy

dx = 0.38, and evidently this simulation confirms the theory suggested in
Eq. (9), just because λ = (0.38 + α1 + α2)/2.

Finally, as an empirical example of λ ≠ (α1 + α2)/2, we propose to study the cross-correlation between the Dow Jones
and the 00062.SS (SSE Shanghai local company) indexes. In order to accomplish this goal, we will study the values of the
successive differences in adjusted closing prices from January 4, 2000 to December 9, 2010, recorded daily [35]. Again, as in
the previous cases, FDFA(n) and FDCCA(n) can be fitted by power-law correlations with αDJ = 0.47(◦), αSSE = 0.59(�), and
λDJ×SSE = 0.77(×), see Fig. 4(a). Fig. 4(b) presents the value of the detrended cross-correlation coefficient, ρDCCA(n), with
dy
dx = 0.48 (continuous line). As expected theoretically from Eq. (9), λ = (0.48 + αDJ + αSSE)/2.

4. Conclusions

In this paper, we proposed a new theoretical approach based on the detrended cross-correlation coefficient ρDCCA(n).
The goal in this theory was to use it to establish a relationship between αDFA (the long range auto-correlation exponent)
and λDCCA (the long range cross-correlation exponent). We emphasize that this theory has been tested in both simulated
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Fig. 3. (a) Detrended variance, FDFA(n), and the detrended covariance, FDCCA(n), as functions of n for two time series {y1} and {y2} generated by the ARFIMA
processes: in this process we have ρ1 = 0.1, ρ2 = 0.4, εi ≠ ε′

i , and W = 0.85. A long range power-law auto-correlation, FDFA(n) ∼ nα , and long range
power-law cross-correlation, FDCCA(n) ∼ nλ , are generated. (b) DCCA cross-correlation coefficient ρDCCA × n. The continuous line represents the linear
adjust, dy/dx, with R = 0.98, sd = 0.05, and pvalue < 0.0001.

Fig. 4. (a) Detrended variance FDFA(n) and detrended covariance, FDCCA(n) as functions of n for successive differences in adjusted closing prices for Dow
Jones y1 and SSE y2 indexes, recorded daily from January 4, 2000 to December 9, 2010. (b) DCCA cross-correlation coefficient ρDCCA × n. The continuous
line represents the linear adjust, dy/dx, with R = 0.94, sd = 0.11, and pvalue < 0.0001.

and real-world cases, and the results are entirely in agreement with Eq. (9). Lastly, this theory can help understand a little
better cross-correlations in the presence of nonstationarity, because in the future, the derivative, dy

dx , can be an interesting
indicator for this.
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