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A semi-analytical dispersion model from a steady source                                    
of short duration

Modelo de dispersão semianalítico para uma fonte de curta duração

Davidson Martins Moreira *1

1 Centro Integrado de Manufatura e Tecnologia, Salvador, Bahia, Brasil

Abstract

This paper presents a semi-analytical unsteady-state solution to the atmospheric dispersion equation for substances 
subject to chemical-physical decay and that allows a description of the time evolution of the concentration field 
emitted from a source during a release of short duration. This solution is suitable for describing critical events 
relative to accidental release of toxic, flammable or explosive substances. The results of the sensitivity analysis and 
of validation testing, with a proper parameterization of the vertical profiles of the wind and eddy diffusivities, were 
evaluated against experimental data found in the literature.
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Resumo

O presente trabalho apresenta uma solução semianalítica no estado não-estacionário da equação de dispersão 
atmosférica para substâncias sujeitas a decaimento químico e físico e que permite uma descrição do tempo evolutivo 
do campo de concentração emitido por uma fonte durante uma liberação de curta duração. Essa solução permite 
uma descrição de eventos críticos relacionados à liberação acidental de substâncias explosivas e inflamáveis. Os 
resultados da análise de sensibilidade e do teste de validação, com parametrização apropriada dos perfis verticais de 
vento e coeficiente de difusão, foram avaliados com dados experimentais encontrados na literatura.

Palavras-chave: camada limite atmosférica, poluição do ar, modelo de dispersão.
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Atmospheric dispersion of pollutants has attracted 
attention of researchers in many ways. It adds have fo-
cused on the environmental impact and health hazards; 
others have worked on various modeling aspects such 
the meteorological conditions, dispersion mechanisms, 
removal mechanisms, topographical features, etc. Ma-
thematical modeling has been the case of many of these 
studies. The importance and the need of mathematical 
modeling are well known in the scientific community. 
There are various modeling approaches that have been 
used effectively in the past to deal with air pollution dis-
persion (Zannetti, 1990; Seinfeld and Pandis, 1998; Arya, 
1999), and many of them utilize analytical approaches 
(Tirabassi, 1989; Lin and Hildemann, 1997; Seinfeld and 
Pandis, 1998; Tirabassi, 2003; Sharan et al., 2003). Analy-
tical solutions (as opposed to numerical ones) explicitly 
take into account all the parameters of a problem, so 
that their influence can be reliably investigated and it 
easy to obtain the asymptotic behavior of the solution, 
which is usually difficult to generate through numerical 
calculations. Moreover, bearing in mind that the errors 
inherent to mathematical models are due to the mode-
ling of the physical phenomena (Moreira et al., 2004) 
and numerical errors, it turns out that the analytical 
solutions, somehow, eliminate the numerical error of 
the equation solution except for the round-off error. As 
a consequence, becomes possible to make a more realis-
tic analysis of the error appearing in the mathematical 
modeling due to the physical phenomena. Exist a vast 
literature about the numerical approaches, and, for sake 
of illustration, we cite the works of Tangerman (1978), 
Sharan et al. (1997), Brebbia (1981), Chock et al. (1996), 
Huebner et al. (2001) and Rizza et al. (2003). 

The mathematical models of pollutant dispersion 
in the atmosphere represent an important technical 
instrument, as for the knowledge of the state of the 
atmosphere, united to monitoring net, as for the environ-
mental management. Both our scientific understanding 
and technical developments have been greatly increa-
sed by the use of empirical, analytical and numerical 
models (Tangerman, 1978) to predict the air pollution 

concentration in atmosphere. For this purpose, the ad-
vection-diffusion equation has been largely applied in 
operational atmospheric dispersion models. In principle, 
from this equation it is possible to obtain the dispersion 
from a source given appropriate boundary and initial 
conditions plus knowledge of the mean wind velocity 
and concentration turbulent fluxes. The simplicity of the 
K theory of turbulent diffusion has led to the frequent use 
of this theory as the mathematical basis for simulating 
air pollution dispersion. Despite these well-known limits 
(Pasquill and Smith 1983), the K closure is widely used 
in several atmospheric conditions, because it describes 
the diffusive transport in an Eulerian framework, where 
almost all measurements are Eulerian in character (i.e., 
they are collected in a framework fixed with respect to the 
earth). It produces results that agree with experimental 
data as well as any more complex model, and it is not 
as computationally expensive as higher-order closures.

In this work, a step forward is taken toward solving 
the two-dimensional, unsteady-state advection–diffusion 
equation by the ADMM (Advection-Diffusion Multilayer 
Method) (Moreira et al., 2006) method depending on the 
time release. This solution allows a description of the 
time evolution of the concentration field emitted from a 
source during a release lasting time   and chemical-phy-
sical decay. To validate the results obtained, numerical 
comparison is undertaken with available results in the 
literature. To reach our objective, we organize the paper 
as follows: in section 2, we report the solution of the 
advection-diffusion equation by the ADMM method. 
In section 3, we show the turbulent parameterizations. 
In section 4, are presented numerical simulations and 
comparison with experimental data, and finally in section 
5, the conclusions.

2 The mathematical model

A typical problem with the advection-diffusion equa-
tion involves the solutions of problems corresponding 
to instantaneous and continuous sources of pollution. 
More precisely, considering a Cartesian coordinate system 
in which the x direction coincides with that one of the 
average wind, the time dependent advection-diffusion 
equation can be written as (Huang, 1979):

	
                              

 
are Cartesian components of eddy diffusivity, u is the 
longitudinal wind speed and S a source/sink term. 

The analytical solution of the Eq. (1) can be obtained 
assuming (Huang, 1979):

                                                 

1 Introduction

The usual interventions to safeguard environment 
and people against industrial activities often imply 
tackling problems connected with the release in the 

atmosphere of toxic, flammable or explosive substances. 
Moreover, it is necessary to rely on models that do not 
require excessive computational resources to describe 
the time evolution of the concentration fields and the 
duration of exposure to emitted substances. This often 
depends on the necessity of providing estimates in a 
short time and in emergency situations. The diffusion 
models for steady-state or instantaneous emissions (pu-
ffs) are frequently inadequate, since they do not include 
some important parameters, such as the duration of the 
release or the duration of the exposure..
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The function                 can be expressed as:

                                          
(3)

and is the solution of the following equa-
tion:

                                    

where         is the crosswind integrated concentration 
and      represents a chemical-physical decay coefficient.

The mathematical description of the dispersion pro-
blem represented by the Eq. (4) is well posed when it is 
provided by initial and boundary conditions. Indeed, it 
is assumed that at the beginning of the pollutant release 
the dispersion region is not polluted, this means:

      

and a source of constant emission rate      is assumed:

where                   is the Dirac delta function, H5 the 
source height,    is the Heaviside function and tr is the 
duration of release (Bianconi and Tamponi, 1993). 

The pollutants are also subjected to the boundary 
conditions:

                                                   (7a) 

and 

                                                    (7b) 

where h is the height of the Atmospheric Boundary 
Layer (ABL). 

In the following we assume that              as well the 
wind speed u depend only on the variable z and we as-
sume an averaged value. The stepwise approximation is 
applied in problem (4) by discretization the height h into 
sub-layers in such manner that inside each sub-layer, 
average values for                  and u are taken. At this point, 
it is important to remark that this procedure transforms 
the domain of problem (4) into a multilayered-slab in the 

z direction. Furthermore this approach is quite general 
in the sense it can be applied when these parameters 
are an arbitrary continuous function of the z variable. 

Indeed, it is now possible to recast problem (4) as 
a set of advective- diffusion problems with constant 
parameters, which for a generic sub-layer reads like:

                   

for n = 1:NL, where NL denotes the number of sub
-layers and       the concentration at the nth sub-layer. 
Besides which, two boundary conditions are imposed 
at   z = 0 and h given by equation (7) together with the 
continuity conditions for the concentration and flux of 
concentration at the interfaces. Namely:

                                 n = 1, 2,...(N-1)          (9a)

              
                                             n = 1, 2,...(N-1)          (9b)

must be considered, in order to be possible to uni-
quely determine the 2N arbitrary constants appearing 
in the solution of the set of problems (8).

Now, applying the Laplace transform in equation 
(8) results in:

           (10)

with the initial condition:

                                 at   t = 0         (11)

source condition:

at   x = 0                                              
    (12)

and the boundary conditions:

                                                                           (13a) 
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and 

                                                                           (13b) 

where                                                                       , 
which has the solution:

(14)

where

where

                                                                          ;

where   is the Heaviside function and xne KxuP     
is the well known Peclet number, essentially representing 
the ratio between the advective transport to diffusive 

                                                                      ;

   

Finally, applying the initial and boundary conditions 
one obtains a linear system for the integration constants. 
Then the concentration is obtained by inverting nume-
rically the transformed concentration     by a Gaussian 
quadrature scheme (Stroud and Secrest, 1966):

for t > tr:

                                                                                 (15)

for tr > t :

                                                                           (16)

transport. This can be physically interpreted as the 
parameter whose magnitude indicates the atmospheric 
conditions in terms of the strength of winds. Small values 
of this number may be related to the weak winds when 
the downwind diffusion becomes important and the 
region of interest remains close to the source, whereas 
large values imply moderate to strong winds when the 
downwind diffusion is neglected in comparison to the 
advection and the region of interest extends to a larger 
distance from the source. 

The solution is valid for x > 0 and t > 0, as the quadra-
ture scheme of Laplace inversion does not work for x = 
0 and t = 0. The constants ai, aj, and pi, pj are the weights 
and roots of the Gaussian quadrature scheme and are 
tabulated in the book by Stroud and Secrest (1966) while 
k and m are the quadrature points. However, we are 
aware of the existence in the literature of more accurate 
methods to evaluate this integral, like the multi-precision 
approach (Abate and Valkó, 2004). The semi-analytical 
character of the solutions (14) and (15) reduces to the 
solution of the Moreira et al. (1999) when the time goes 
to infinity (          ),                and           . 

In order to show pollutant numerical simulations 
for a time-dependent three-dimensional, we finalize 
reporting a simplified solution for this sort of problem, 
reliable for some physical scenarios. Indeed, we assume 
that the time-dependent three-dimensional solution is 
written in terms of the time-dependent two-dimensional 
solution multiplied by the steady Gaussian function in 
the y-direction. This procedure yields:

                                                                       (17)
 

where                    is expressed by the previous dis-
cussed formulation.  
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3 Boundary layer parameterization

In the atmospheric diffusion problems the choice of 
a turbulent parameterization represents a fundamental 
aspect for pollutant dispersion modeling. The reliability 
of each model strongly depends on the way the turbulent 
parameters are calculated and is related to the current 
understanding of the ABL (Mangia et al., 2002). In order 
to calculate the three-dimensional concentration in the 
ground-level centerline concentration (Eq. 14) we need 
to know the lateral dispersion parameter  . For a Convec-
tive Boundary Layer (CBL) (Copenhagen experiment), 
we used the lateral dispersion parameter       derived 
by Degrazia et al. (1998). It presents the following form:

                                                                   
                                                                                  (18)

where X is a non-dimensional distance (                  ),   
is the convective velocity scale and h is the top of the CBL. 

The equation (18) contain the unknown function    , 
the molecular dissipation of turbulent velocity is a le-
ading destruction terms in equations for the budget of 
second-order moments, and according H   jstrup (1982), 
has the form:

                                       
                                                                         (19)

where L is the length of Monin-Obukhov defined in 
the surface boundary layer.

In terms of the convective scaling parameters the 
vertical eddy diffusivity can be formulated as (Degrazia 
et al., 1997):

                       

                                                             (20)

The equations used by the model to calculate mean 
wind are those predicted by similarity theory (Panofsky 
and Dutton, 1988):

                                                                 (21)

where u* is the scale velocity relative to mechanical 
turbulence, k the von Karman constant, zo is the rou-
ghness length and      the stability function expressed 
in Businger relations:

for 1/L < 0

with                                 .

4 Numerical simulations

The solution (15) and (16) are dependent on tr and
  parameters. Then, the sensitivity of the ground-level 
concentration to each parameter is tested. Firstly, to show 
an example of the application of the obtained solution 
(16) (tr > t), we report in Figure 1 the time evolution 
of non-dimensional concentration QuhC y /  at three 
downwind distances (x = 500, 1000 and 2000m). 

Figure 2 shows the non-dimensional ground level 
concentration ( QuhC y /  ) as a function of the source 
distance with variable duration releases (tr = 50, 100, 
150, 200s) for three different times (t = 250, 500 and 750s) 
emitted through a stack with a physical height of 10m, 
in micrometeorological conditions characterized by a 
2m/s wind velocity, a 1100m mixing layer, w* = 2m/s 
and L = -10m.

Figure 2 shows that the concentration peak values 
increases as the duration of the release grows longer, 
until it reaches a limit value, for sufficiently long du-
rations of the release. Besides, the concentration peak 

y  

 






0

23/5
3/12

2

2

)1(
26.2sin21.0

nn
ndnX

zi

y 



 

uhxwX *  

  

 

2/13/22
3/1 75.01




























 



L
z

h
z  





























 








h
z

h
z

h
z

h
z

hw
K z 8exp0003.04exp1122.0

3/13/1

*

 





























 








h
z

h
z

h
z

h
z

hw
K z 8exp0003.04exp1122.0

3/13/1

*

 















 

L
z

z
z

k
uu m

0

ln  

m  

2
arctan2

2
1ln

2
1ln

22  





 








 







 xxx

L
z

m  

  41/151 Lzx    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Time evolution of non-dimensional concentration at three downwind distances (x = 
500m, 1000 and 2000).  
 

Figure 1: Time evolution of non-dimensional 
concentration at three downwind distances (x = 500m, 
1000 and 2000).



Ciência e Natura, v. 36 Ed. Especial, 2014, p. 149–159 154

values decrease with the increase of the source distance.
Figure 3 shows the concentration time evolutions 

with the parameters of the reference situation for release 
duration of 50s for different values of the chemical-phy- 
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Figure 2: Crosswind integrated concentration as a 
function of the source distance for three different 
times (t = 250, 500 and 750s) and different durations of 
release (tr= 50, 100, 150 and 200s).

sical decay coefficient (  ) at downwind distance of 500 
and 1000m.

Figure 3 show the time evolution of concentration at 
downwind distance of 500 and 1000m for time release 
of 50s and different chemical-physical decay constants. 
Figure 3 shows that the concentration peak values de-
crease as the downwind distance increase. Also, as the 
downwind distance increase, the peak concentration 
variation between the chemical-physical decay cons-
tants, increase. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3: Time evolution of concentration at 
downwind distance of 500m and 1000m for time 
release of 50s and different chemical-physical decay 
constants.
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(b)

Figure 4 shows concentration distributions in the ho-
rizontal xy-plane at ground-level for six different times: 
t = 100, 500, 100, 2000, 3000 and 5000s. These isolines 
of equal concentration corresponds the solution tr > t .  

As expected, the time becomes longer, the concentra-
tions values enter into a steady-state condition. 
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Figure 4: Concentrations distributions in the horizontal xy-plane at ground-level for six different times: t = 
100, 500, 100, 2000, 3000 and 5000s, for the solution  . 
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Figure 5 shows concentration distributions in the 
horizontal xy-plane at ground-level for the time t = 1000s 
and four different time release ( tr = 300, 500, 800 and 
950s). The lines represent isolines of equal concentration. 

As the duration of the release becomes longer, the 
concentrations values enter into a steady-state condition. 
Comparing the Figures 4 for t = 1000s and Figures 5 this 
affirmative is clearly observed. 

Furthermore, we evaluated the performance of the 
model with the boundary layer parameterization pro-

posed, using the Copenhagen data set (Gryning and 
Lyck, 1984). The Copenhagen data set is composed of 
tracer SF6 data from dispersion experiments carried 
out in northern Copenhagen. The tracer was released 
without buoyancy from a tower at a height of 115 m and 
was collected at ground-level positions in up to three 
crosswind arcs of tracer sampling units. The sampling 
units were positioned 2-6 km far from the point of re-
lease. We used the values of the crosswind integrated 
concentrations normalized with the tracer release rate 

Figure 5: Concentrations distributions in the horizontal xy-plane at ground-level for t = 1000s and four different 
times releases: tr = 300, 500, 800 and 950s, for the solution  .  
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from Gryning et al. (1987). Tracer releases typically star-
ted up 1 hour before the tracer sampling and stopped 
at the end of the sampling period. The site was mainly 
residential with a roughness length of 0.6 m. Generally 
the distributed data set contains hourly mean values of 
concentrations and meteorological data. However, in 
this work, we used data with a greater time resolution. 
In particular, we used 20 minutes averaged measured 
concentrations and 10 minutes averaged values for meteo-
rological data. In such manner, in this work, the variables  
( L, u*, w*   ) in the Copenhagen data set are dynamical 
variables (except the variable h). For details of the ex-
perimental data see the works of Tirabassi and Rizza 
(1997) and Costa et al. (2006).

The results obtained with the ADMM method are 
compared with the M4PUFF model (Tirabassi and Rizza, 
1997) which is based on a general technique for solving 
the K-equation using the truncated Gram-Charlier ex-
pansion (type A) of the concentration field and a finite 
set equation for the corresponding moments. Table 1 
presents some performance measurements, obtained 
using the well-known statistical evaluation procedure 
described by Hanna (1989). The statistical index FB in-
dicates whether the predicted quantities underestimate 
or overestimate the observed ones. The statistical index 
NMSE represents the quadratic error of the predicted 
quantities in relation to the observed ones. The best 
results are indicated by values nearest 0 in NMSE, FB, 
and FS, and nearest 1 in COR and FA2. 

The statistical indices point out that a good agree-
ment is obtained between experimental data and the 
ADMM model. A more detailed inspection of the Table 
1 permits to stress that the ADMM simulate well the 
observed concentrations presenting the best values for 
NMSE, COR (81%) and FA2 (95%).

5 Conclusions

A solution of the unsteady-state two-dimensional 
advection–diffusion equation has been presented that 
considers the duration time release and chemical-physical 
decay and can be applied for describing the turbulent 
dispersion of many scalar quantities, such as air pollution, 
radioactive material, heat, and so on. From the previous 
results, we promptly notice the aptness this model to 
understand the time evolution of the concentration 

and its dependency on the duration of the contaminant 
emission. In fact, this model, allow us to simulate the 
continuous, short-term and instantaneous emissions. In 
particular, the model is suitable for an initial and rapid 
assessment of atmospheric dispersion under emergency 
conditions without sophisticated computing resources. 

To show the performances of the solution in actual 
scenarios, a parameterization of the ABL has been intro-
duced, and the values predicted by the solutions have 
been compared with experiment dataset. The analysis 
of the results shows a reasonably good agreement be-
tween the computed values and the experimental ones. 
The discrepancies with the experimental data depend 
not on the solution of the advection–diffusion equation 
but on the equation itself, which is only a model of the 
reality. Moreover, a source of discrepancies between 
the predicted and measured values lies in the ABL 
parameterization used (i.e., vertical wind and eddy 
diffusivity profiles). Although models are sophisticated 
instruments that ultimately reflect the current state of 
knowledge on turbulent transport in the atmosphere, 
the results they provide are subject to a considerable 
margin of error. This is due to various factors, including 
in particular the uncertainty of the intrinsic variability 
of the atmosphere. Models, in fact, provide values ex-
pressed as an average, that is, a mean value obtained 
by the repeated performance of many experiments, 
whereas the measured concentrations are a single value 
of the sample to which the ensemble average provided 
by models refers. This is a general characteristic of the 
theory of atmospheric turbulence and is a consequence 
of the statistical approach used in attempting to para-
meterize the chaotic character of the measured data. In 
light of the above considerations, an analytical solution 
is useful for evaluating the performances of sophisticated 
numerical dispersion models (which numerically solve 
the advection–diffusion equation), yielding results that 
can be compared not only with experimental data but, in 
an easy way, with the solution itself, to check numerical 
errors without the uncertainties presented above.
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