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1. Introduction

In the last years, special attention has been given to the issue of
searching analytical solutions for the advection—diffusion equation
in order to simulate the pollutant dispersion in the Atmospheric
Boundary Layer (ABL). In fact, the mathematical modeling has been
an important tool in all scientific areas, including environmental
problems in the atmosphere, water and soil. However, a little
attention has been given to the atmospheric problems to find
analytical solution of this equation for eddy diffusivity as a function
of both downwind distance (x) from the source and the vertical
height (z) above the ground, mainly due to the mathematical
complexity problem involved. We are aware of the analytical so-
lutions existence in the literature, but for specific and particular
problems. Among them, we mention the works of Rounds (1955),
Smith (1957), Scriven and Fisher (1975), Demuth (1978), van Ulden
(1978), Nieuwstadt and de Haan (1981), Sharan et al. (1996), Lin
and Hildemann (1997), Wortmann et al. (2005), Sharan and
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Modani (2006), Sharan and Kumar (2009). In all of these analyt-
ical models, the wind speed is either a power law or logarithmic
profile of vertical height and similarly the eddy diffusivity has been
assumed either a power law or a parabolic profile of z or a function
of downwind distance from the source. However, none of these
provides a systematic approach to find the solution with the
generalized functional forms of wind speed and eddy diffusivity. At
this point, it is important to mention that a solution of the advec-
tion—diffusion equation can be written either in integral form and
series formulations, with the main property that both solutions are
equivalent (Moreira et al., 2010). Furthermore, analytical solutions
are very important to understand and describe the physical phe-
nomenon, since they are able to take into account all the parame-
ters of a problem and investigate their influence. Besides, an
analytical solution is useful to evaluate the performances of so-
phisticated numerical dispersion models, which numerically solves
the advection—diffusion equation, giving results that can be
compared not only with experimental data but also, in an easy way,
with the solution itself, to check numerical errors.

Focusing our attention in this direction, the novelty of this work
relies on the solution semi-analytically of two-dimensional
advection—diffusion equation considering a realistic eddy diffu-
sivity depending on the x and z variables in an air pollution prob-
lem. We step forward regarding previous works (Moreira et al.,
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2005a,b), that include integral and series solutions of the advec-
tion—diffusion equation considering the average value for the eddy
diffusivity in the x direction. In the current work, it was not
considered this assumption. Therefore, it is possible to investigate
the memory effect in turbulent dispersion process without ap-
proximations in the x direction, representing an advance the
knowledge of near-source process. To reach this goal, we outline
the paper as follows: in Section 2 the turbulent parameterization
assumed in this work is presented; in Section 3, we report the
derivation of the solution for the advection—diffusion equation
with eddy diffusivities depending on x and z variables; in Section 4,
results with numerical simulations are reported; finally, in Section
5, we present the conclusions.

2. Parameterizations

In many studies, in order to obtain analytical solutions of the
advection—diffusion equation, the eddy diffusivities can be speci-
fied as linear functions of downwind distance based on Taylor’s
(1921) statistical theory of diffusion for smaller travel times. That is,

Ky = aUx; K, = fUxand K; = yUx (1)

where «, 8 and v represent turbulence parameters and vary with
the atmospheric stability. These parameters can be identified as
squares of turbulence intensities using Taylor’s statistical theory of
diffusion (Arya, 1995).

In this work, we step forward regarding analytical solutions,
considering the turbulence parameterization scheme suggested by
Degrazia et al. (2001) and Goulart et al. (2004), that is depending on
x and z variables. In terms of the convective scaling parameters, the
eddy diffusivity can be formulated as:

120173 (e \ 23y,
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(2)

where w+ is the convective velocity scale (« = x,y,z), z is height
above the ground, ¢ is the nondimensional molecular dissipation
rate functions associated to buoyancy productions, (f,); is the
reduced frequency of the convective spectral peak and
¢i = ajon(2mk) 23 with oy, = 0.5 + 0.05 and «; = 1, 4/3, 4/3 for u, v
and w components, respectively, and X is a nondimensional time,
since it is the ratio of travel time x/u and the convective timescale h/
w+. For more details regarding vertical eddy diffusivity see the
works of Degrazia et al. (2001) and Goulart et al. (2004).

For the sake of comparison, we report numerical simulation for
the solution of the advection—diffusion equation assuming the
eddy diffusivity K(z) proposed by Degrazia et al. (1997), that
represent asymptotic limit of the Eq. (2):
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Furthermore, employed in the convective conditions (mixed-
layer), we also compare with the parameterization suggested by
Brost et al. (1988):

Ka =wsxh

(3)

K, = kw-z(1 — z/h) (4)

where k is the von Karman constant (~0.4).

The formulae used for evaluating mean wind speed are those of
similarity (Panofsky and Dutton, 1984):
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where u* is the scale velocity relative to mechanical turbulence, k

the von Karman constant, L is the Monin-Obukhov length, z,
roughness length and Wy, is the stability function expressed as:
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with A = (1 — 15z/L)"". The similarity expression is utilized of
within the surface layer (above the wind velocity is considered
constant with height).

The eddy diffusivity (2), as a function of downwind distance, is
dependent of z and gives a description of turbulent dispersion near,
intermediate and far from fields of a source in the ABL (the memory
effect of turbulent transport is considered).

3. The mathematical scheme

It is well-known that analytical solutions can be expressed
either as integral form or series formulation (Moreira et al., 2010).
Taking into account the equivalence of these solutions, in this study
we report, for the first time, the results attained by an integral
solution considering eddy diffusivity depending on z and x vari-
ables (without average values in the x direction as in previous
works). The reason for this choice comes from the fact that among
the semi-analytical and analytical methods available in the litera-
ture, this approach is the only one to solve pollutant dispersion
problems for a broader class of problems and a variety of physical
scenarios with any restriction to spatial characteristics of wind and
eddy diffusion coefficients.

For a Cartesian coordinate system in which the x direction co-
incides with that one of the average wind, the steady state advec-
tion—diffusion equation is written as (Arya, 1995):

oc 0 oc 0 oc 0 ac

where ¢ denotes the average concentration, u is the mean wind
speed in x direction and Ky, K, and K are the eddy diffusivities. The
cross-wind integration of Eq. (6) (neglecting the longitudinal
diffusion) leads to (Moreira and Vilhena, 2009):

u@ % = 2 <I<z<x,z> %) (7)

subject to the boundary conditions of zero flux at the ground and
ABL top and a source with emission rate Q at height Hs:

acy
I<Za_z = 0 at zZ = ZQ7 h (8)

ucy(0,z) = Qé(z—Hs) at x = 0 (9)

where now ¢’ represents the average cross-wind integrated con-
centration. Bearing in mind the dependence of the K, coefficient
and wind speed profile u on variable z, the height h of an ABL is



256 D.M. Moreira et al. /| Atmospheric Environment 83 (2014) 254—259

discretized in N sub-intervals in such a manner that inside each
interval assume average values in this direction.

At this moment, it is important to mention that the eddy
diffusivity represented by Eq. (2) can be write as K(x,z) = g(z)-f(x,z),
where g(z) (or a constant) is a dimensional function [L*T~'] and
fix,z) is a nondimensional function. Therefore, the solution of
problem (7) is reduced to the solution of N problems of the type:

Zn <7 < Zpyq (10)

for n = 1: N, where ¢, denotes the concentration at the nth sub-
interval, and,

Zns1

_ 1
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The proposed integral solution of the advection—diffusion
equation with K(x,z) do not have in literature. Recently, Kumar and
Sharan (2010) proposed a series solution where is assumed the
function K(x,z) = g(z)-f(x) (considering two separate functions). It is
important to mention that our hypothesis in K(x,z) is more general.

To obtain the solution of Eq. (10), we make a change of variables
(Crank, 1979). Let us introduce a new time variable x* defined by the
transformation as,

X = [ falx)dx (14)
/

The dimension of x* is same as x [L], so it is referred to as a new
space variable. Because f,(x) >0, the function x — x* is an
increasing function of x, vanishing in x = 0. Thus, the nature of the
condition at x = 0 does not change in the new domain.

The problem, together with their source and boundary condi-
tions, in new space variable becomes:

(15)

for n = 1:NL, where NL denotes the number of sub-layers and ¢, the
concentration at the nth sub-layer. Besides which, two boundary
conditions are imposed at z = z, and h (ABL height) given by Eq. (8)
together with the continuity conditions for the concentration and
flux of concentration at the interfaces,

28
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must be considered, in order to be possible to uniquely determine
the 2N arbitrary constants appearing in the solution of the set of
problems (15). For more details about this, see the work of Moreira
etal.(2006). Now, applying the Laplace transform in Eq. (15) results:
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where Cp(s,z) = Lp{c(x",z);x"—s}, which has the well-know
solution:
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(17)
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The concentration is obtained inverting numerically the trans-
formed concentration:

A(x2) = / <Ane[(¢§)4 pe (V)]
I [V L
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(18)

where H(z—Hs) is the Heaviside function. The integration constants
A, and B, are previously determined by solving the linear system
resulting from the application of the boundary and interfaces
conditions.

At this point, we need a method for the Laplace transform
inversion. Because all methods have limitations, we emphasize the
utilization of more than one algorithm to invert a transform. It is
important to mention that Laplace transforms are powerful tools
used primarily to solve differential equations. The principal diffi-
culty in using them is finding their inverses. Unless the transform is
given in a table, an integration must be performed in the complex
plane (Bromwich'’s integral) to find the inverse. Despite the power
of complex analysis, this analytical technique often fails and
Bromwich’s integral finally must be numerically integrated. Below,
we show two alternatives to obtain the inversion, where the more
simple method is the Gaussian quadrature scheme. However, the
second alternative is a more robust method. It was our option to use
in this work the Fixed-Talbot method in the simulations.

a) Gaussian Quadrature scheme (GQ):
2(6.9) - P (K] g ()]
k=1
() en] H(z — Hy) (19)

where ay and py are the weights and roots of the Gaussian quad-
rature scheme tabulated in Stroud and Secrest (1966) and M" is the
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number of the quadrature points. In this method the parameter s is
replaced by py/x".

b) Fixed-Talbot scheme (FT):

It is a more robust inversion method and this formula is general
in FT method, where we can approximate the value of the integral
by using the trapezoidal rule with step size w/M, obtained in the
work of Abate and Valké (2004):

_ _ oMl
d (x*,z) :& EC% (rz)e™ + kz:; Re [e" S0 (s(),2)(1 +ir(0k))H

(20)

s() = ro(cotd +1i), —-m<O<+m

7(0) = O + (Ocotld, — 1)cotd,

km
M

and r is a parameter based on numerical experiments and M is the
number of terms in the summation.

Both GQ and FT methods have only one free parameter: M",
which is the number of the quadrature points in the GQ method
and M, which is the number of terms in the summation in the FT
method. Both algorithms provide increasing accuracy as M* and M
increases. Because all methods have limitations, we emphasize the
utilization of more than one algorithm to invert a transform. Since
numerical Laplace inversion techniques are not exact, and often
depend on the choice of a free parameter that is unknown a priori,
it is advantageous to either use more than one inversion technique
or perform experimentation and study the effect of the free
parameter on the solution. In recent years, numerical transform
inversion has become recognized as an important technique in
operations research, notably for calculating probability distribu-
tions in stochastic and deterministic models (Abate and Valko,
2004). The significance of numerical Laplace inversion is obvious
from the big range of applications. Well-known in engineering,
Laplace transformation methods are also used in order to solve
differential and integral equations and to assist when other nu-
merical methods are applied.

Concerning the issue of stepwise approximation, it is important
to get in mind that the stepwise approximation of a continuous
function converges to the continuous function when the stepwise
of the approximation goes to zero. For this method, it is only
necessary to choose the number of the sub-layers in an appropriate
manner, by taking the smoothness of the functions K and u into
account. Therefore, this model preserves the beauty of an analytical
solution without compromising the accuracy of wind speed and
eddy diffusivity to compute the cross-wind integrated
concentrations.

In summary, for a better understanding of the reader, the
implementation of the algorithm for computing the solution con-
sists on the following steps: stepwise approximation of the eddy
diffusivity and wind speed in the z direction; change of variable in
the x direction; the Laplace transform application to the advection—
diffusion equation in the transformed variable; semi-analytical
solution of the linear ordinary equation set resulting in the Lap-
lace transform application and construction of the pollutant con-
centration by the Laplace transform inversion, using the FT scheme.

4. Comparison with experimental data

In order to illustrate the aptness of the discussed formulation to
simulate contaminant dispersion in the ABL, we evaluate the per-
formance of the discussed solutions against experimental ground-
level concentration using the Prairie Grass dispersion experiments,
which allow us to validate the results encountered by the solution.
The Prairie Grass experiment was realized in O’Neill, Nebraska,
1956. The pollutant (SO,) was emitted without buoyancy at a
height of 0.5 m and it was measured by samplers at a height of
1.5 m in five downwind distances (50, 100, 200, 400, 800 m). The
Prairie Grass site was flat with a roughness length of 0.6 cm. The
results for twenty convective (—h/L~! > 10) experiments are pre-
sented. For more details see the work of Nieuwstadt (1980).

Table 1 presents some performance measurements obtained
using the well-known statistical evaluation procedure described by
Hanna (1989). The statistical index FB indicates whether the pre-
dicted quantities underestimate or overestimate the observed ones.
The statistical index NMSE represents the quadratic error of the
predicted quantities in relation to the measured data. The best re-
sults are indicated by values nearest to 0 in NMSE, FB, and FS
(Fractional Standard), and nearest to 1 in COR (CORrelation coeffi-
cient) and FA2 (FActor of 2).

These results are compared with those obtained from a K(z)
(asymptotic limit, Eq. (3), and Brost et al., 1988, Eq. (4)), and are
shown in Table 1. In general, the concentrations are close to those
observed within a factor of 2 of 86% and correlation of 98% for K(x,z)
scheme, including the best NMSE. The scheme K(z), represented by
asymptotic limit of Eq. (2), predicts the concentrations with a factor
of 2 of 74% and correlation of 97% and, the scheme K(z) of Brost et al.
(1988), a factor of 2 of 53% and correlation of 92%, with poor NMSE
of 1.46. In this case, it is possible to note that the model reproduces
very well the observed concentration using K(x,z). Besides that, we
observe from Fig. 1 that the model reproduces better the concen-
trations closer to the source (higher concentrations). The discrep-
ancies increase for larger distances (lower concentrations), where
the plume penetrates the free convection layer, rapidly decreasing
the concentration (Nieuwstadt, 1980). The Prairie Grass experiment
used sulfur dioxide gas. However, we understand now that many of
these tracers were subject to significant removal due to deposition,
which was not included in this model (Gryning et al., 1983).

We show in Table 2, in order to verify the errors involved due to
(i) the number of sub-layers and (ii) numerical inversion, the so-
lution obtained at various points (x = 50,100, 200, 400 and 800 m)
for the experiment five of Prairie Grass with L = —28 m, h = 780 m,
w+ =164 ms ! and Q = 78 g s~!. We also include a comparison
with a numerical solution (finite differences scheme) of Eq. (7).

We observe promptly the numerical convergence of the results
encountered for ground-level concentration as function of Az
(vertical discretization) and M (number of terms in the summa-
tion). As expected, for a source in a very low height (~0.5 m),
distances closer to the source require a more fine discretization and
greater number of M terms to obtain good results. In this work we
used Az = 0.25 m until 0.1h and Az = 10 m for sub-layers above,
with M = 100. The hybrid and numerical techniques match well,
particularly in the area close to the source. However, the

Table 1
Statistical indices to evaluate the model performance with three different
parameterizations.

Prairie Grass NMSE COR FA2 FB ES

K(x,z) Eq. (2) 0.06 0.98 0.86 —-0.08 0.01
K(z) Eq. (3) 0.17 0.97 0.74 0.04 0.38
K(z) Eq. (4) 1.46 0.92 0.53 0.67 0.86
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concentration results of the numerical method are slightly greater
than semi-analytical results with increasing of the distance.

In spite of the critical dependence of the solution (for low source
case) on the number and choice of the sub-layers as well as the
number of terms used in the summation for inverse Laplace
transform, we can have confidence in the numerically generated
numbers from the semi-analytical solution (K and u converges to
the continuous function when Az — 0 and we used a robust
method for Laplace inversion scheme).

We must remark regarding the numerical methods that besides
the domain discretization into a set of discrete points displayed in a
grid, all the derivatives in the advection—diffusion equation that are
approximated by a finite difference scheme (finite differences,
finite elements, etc.). However, stability and convergence are the
key and important issues as far as numerical solution is considered.
Depending on the scheme, the solution may have oscillation or
spike. Hence it will lead to the erroneous conclusions as compared
to the real physics. Besides, the numerical methods impose a large
number of step calculations used in performing the integration.
Hence it is necessary to have stable and convergence solution with
the optimized CPU time consumption. This feature also does not
appear in the semi-analytical method, because the semi-analytical
character of the solution allows us to perform the calculation at any
distance. This guarantees the smaller computational time as well
the smaller round-off error influence in the accuracy of the results
of the hybrid method when compared with the numerical ones,
because in practice we find that it demands less mathematical
operations. Although to deal with realistic situations, we need to
shift to numerical methods, it is helpful to examine first some of the
possible analytical solutions to obtain a known framework and test
solutions. In this sense, the analytical solutions are useful for a
variety of applications, such as: providing approximate analyses of
alternative pollution scenarios, conducting sensitivity analyses to
investigate the effects of various parameters or processes involved
in contaminant transport, extrapolation over large times and dis-
tances where numerical solutions may be impractical, serving as
screening models or benchmark solutions for more complex

Cp (g.m?)

Fig. 1. Scatter diagram of observed (Co) and predicted (Cp) data. Data between the
middle diagonal line indicates perfect agreement. Dotted lines indicate a factor of two.

Table 2

Numerical convergence of the solution as function of Az and M obtained at various
points (x = 50,100, 200, 400 and 800 m) and numerical solution results for the
experiment five of Prairie Grass.

VD (Az) and Cross-wind concentration & (g m~2)

NTC (M) x=50m x=100m x=200m x=400m x=2800m
Az =025 M= 10 3742 1.844 0.905 0.450 0.230
Az =0.25,M = 50 3.111  1.545 0.760 0.380 0.194
Az=025,M=100 3.111 1.545 0.760 0.380 0.194
Az=05M=10 3791 1.847 0.904 0.450 0.230
Az =0.5,M =50 3.173  1.552 0.761 0.380 0.194
Az =0.5,M =100 3.173  1.552 0.761 0.380 0.194
Az=1,M=10 3.813 1.850 0.904 0.450 0.230
Az=1,M =50 3.212  1.559 0.762 0.380 0.194
Az=1,M =100 3212 1559 0.762 0.380 0.194
Az=2,M=10 3401 1.810 0.903 0.450 0.230
Az =2,M =50 2.763  1.503 0.756 0.379 0.194
Az =2,M =100 2.763  1.503 0.756 0.379 0.194
Az=10,M =10 -0.482  0.506 0.696 0.424 0.228
Az =10, M = 50 0.028 0.452 0.554 0.350 0.191
Az =10, M = 100 0.028 0.452 0.554 0.350 0.191
Numerical solution  3.312  2.231 1.425 0.825 0.532

2 VD (Vertical Discretization) and NTC (Number of Terms for Convergence).

transport processes that cannot be solved exactly, and for validating
more comprehensive numerical solutions of the governing trans-
port equations. In contrast to the existing analytical solutions, the
analytical solution that is presented here is not limited to the shape
of the u and K profiles, so that it is possible to utilize realistic u and K
profiles.

5. Conclusions

In this work, we present a new integral analytical solution of
two-dimensional advection—diffusion equation by using integral
transform method considering the eddy diffusivity depending on x
and z variables. The model given is general in the sense that it can
use any form of parameterization of wind speed u(z) and eddy
diffusivity K(x,z) as an explicit function of variables x and z. By
analytical we observed that no approximation is made along its
derivation, except for the stepwise approximation of the parame-
ters and the Laplace numerical inversion by FT scheme. It is
important to mention that analytical solutions are very important
to understand and describe the physical phenomenon, since they
are able to take into account all the parameters of a problem and
investigate their influence. Moreover, we need to remember that
air pollution models have two kinds of errors. The first one is due to
the physical modeling and another one inherent to the numerical
solution of the equation associated to the model. Henceforth, we
may affirm that the analytical solution, in some sense, mitigate the
error associated to the mathematical model. Therefore, the model
errors somehow, restricts to the physical modeling error.

To evaluate the memory effect, which is consistent with the
prediction of the Taylor statistical diffusion theory and, therefore,
reinforce our confidence in the parameterization (2), a numerical
comparison is also made with results that come out of a simulation
using the asymptotic vertical eddy diffusivity (Eq. (3)) valid for
large diffusion time and the proposed by Brost et al. (1988). The
statistical analysis of the results shows a good agreement between
the results of the proposed approach using K(x,z) with the experi-
mental ones. Furthermore it is important to emphasize that the
results obtained with eddy diffusivity depending on the source
distance (Eq. (2)) are better than the ones reached with asymptotic
eddy diffusivity (Eq. (3)), valid only for the far field of a low source.
The present analysis suggests that the inclusion of the memory
effect as modeled by Taylor’s theory improves the description of the
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turbulent transport process of atmospheric effluent released by a
low continuous source.
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