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a b s t r a c t

The characterization of complex networks is a procedure that is currently found in several
research studies. Nevertheless, few studies present a discussion on networks in which the
basic element is a clique. In this paper, we propose an approach based on a network of
cliques. This approach consists not only of a set of new indices to capture the properties
of a network of cliques but also of a method to characterize complex networks of cliques
(i.e., some of the parameters are proposed to characterize the small-world phenomenon
in networks of cliques). The results obtained are consistent with results from classical
methods used to characterize complex networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Network of Cliques is a type of network that has applications to real situations (e.g. film actors’ networks, co-authorship
network, and semantic networks based on written and oral discourses). The basic element in a network of cliques is
not a vertex but instead is a set of n vertices that are mutually connected, i.e., a clique. These networks have a specific
characteristic: their formation is based on juxtaposition and/or an overlapping of cliques. On the one hand, a juxtaposition
process means to connect two cliques with only one common vertex. On the other hand, when the connection between
cliques occurs with two or more vertices, we have an overlapping process.

‘Networks of cliques’ are represented as a graph G = (V , E) that is a mathematical structure and consists of two sets: V
(finite and not empty) and E (a binary relation on V ). The elements of V are called vertices, and the elements of E are called
edges [1]. In our networks of cliques, each edge has two vertices associated with it. If VG is the set of vertices of the graph G,
then a maximal subset of VG is called a clique if each pair of vertices is connected by one edge.

A highly treated example of ‘network of cliques’ is the film actors’ network [2–5]. In this network, each cast of actors
builds a clique, and each clique of actors is connected with another if they have an actor, or actors, in common. Another
example is that of semantic networks based on titles of scientific papers, in which the cliques are built by words in titles,
and two titles are connected if they have words in common [6,7].

Fig. 1(a) shows an example of an initial state of isolated cliques that consists of t cliques before the juxtaposition and/or
overlapping processes. Fig. 1(b) depicts an example of a ‘network of cliques’ after the juxtaposition and/or overlapping
processes. ‘Networks of cliques’ have different properties in comparison with other types of networks because of their
building process.
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(a) Initial state of isolated cliques. (b) A ‘network of cliques’ connected by juxtaposition
and/or by overlapping.

Fig. 1. An initial state of isolated cliques and a possible ‘network of cliques’.

This paper is organized as follows. In Section 2, we introduce four theoretical structures of ‘networks of cliques’ that are
minimally connected, on which later discussions will be based. In Section 3, we discuss some properties based on measures
of group cohesion from a theoretical perspective. An empirical analysis is performed in Section 4, in which we use semantic
networks that are based on titles of scientific papers with a large number of vertices, so that we can study properties that
emerge from such networks. Finally, our concluding remarks are presented in Section 5.

2. Theoretical structures of ‘networks of cliques’

We define a ‘network of cliques’ that are minimally connected as one in which each clique is connected with another by a
juxtaposition process. This definition includes some topologies or settings for this type of network (Fig. 2).

A ‘network of cliques’ is said to be minimally connected in a line layout if no clique is connected to more than two
others (Fig. 2(a)). Specifically, when the line layout is closed (i.e., if each clique is minimally connected with exactly two
others), the ‘network of cliques’ is said to be minimally connected in a circle layout (Fig. 2(b)). A ‘network of cliques’ is said
to be minimally connected in a star layout if all of the cliques are connected by only one common vertex (Fig. 2(c)). These
configurations are analogous to the classical types of graphs: line, circle and star, respectively (Fig. 3(a)–(c)).

Another configuration, called ‘network of cliques’, minimally connected and arranged in a layer layout (Fig. 2(d)), is
defined as follows: in the central position is a clique and other cliques are connected with it by its ‘free’ vertices (i.e., each
clique is connected with the central clique by each vertex of the central clique that is not connected yet). The process of
‘‘free’’ vertex connections continues until the last clique is connected. In a specific case, when all of the cliques are dyads,
then there is no distinction between the line and layer layouts.

In the next section, we use the ‘networks of cliques’, minimally connected, especially the line and star layout (Fig. 2(a) and
(c), respectively), as theoretical structures with which some real networks will be compared. In addition, we will analyze
the results of some measures of cohesion from the number of vertices and edges, the number of cliques and the sizes of the
cliques.

3. Indices of cohesion

Seven concepts and measures of group cohesion are accounted for to establish a theoretical foundation: the density,
average degree, fragmentation, cut points, geodesic distance, diameter, and clustering coefficient.

3.1. Density

Among the indices of cohesion of a network, one of the most important indices is the density (∆). The density of an
undirected network is the total of the existing edges (|E |) divided by the maximum possible number of edges (n(n − 1)/2).
The classical mathematical expression for calculating the density for undirected networks is given in Eq. (1).

∆ =
2|E |

n(n − 1)
. (1)

For networks in general, the density varies between 0 and 1. The value 0 occurs when the network is completely
unconnected, i.e., all of the vertices are isolated. Becausen−1 is theminimumnumber of edges for a network to be connected,
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(a) ‘Network of cliques’, minimally connected and arranged in a line layout. (b) ‘Network of cliques’, minimally connected
and arranged in a circle layout.

(c) ‘Network of cliques’, minimally
connected and arranged in a star layout.

(d) ‘Network of cliques’, minimally connected
and arranged in a layer layout.

Fig. 2. Examples of theoretical structures of ‘networks of cliques’ that areminimally connected by juxtaposition process. Thewhite vertices are cut vertices
(or cut points) in the line, star and layer layouts, or they are the connection vertices (or connection points) in a circle layout.

cba

Fig. 3. Types of graphs or networks: (a) line, (b) circle and (c) star.

the density of such a network is 2/n. Given a set of vertices, connecting the vertices with the minimum number of edges
corresponds to building a ‘network of cliques’ formed by dyads that are minimally connected.

Consider a ‘network of cliques’ that is nontrivial, i.e., one in which the size of a clique is greater than or equal to 3. When
we have an initial state of isolated cliques (Fig. 1(a)), the number of edges is given by the sum of the quantity of edges in each
clique. Let nq denote the number of cliques, qi the size (i.e., the quantity of vertices) of the ith clique, and n0 the total number
of vertices of an initial state of isolated cliques; then, the density of the initial state of isolated cliques can be expressed by
the following:

∆q0 =
2|E |

n0(n0 − 1)
=

nq
i=1

qi(qi − 1)

n0(n0 − 1)
. (2)

For an initial state of isolated cliques, ∆q0 ≠ 0, once |E | ≠ 0. Then, ∆q0 must be used to normalize the classical density
(Eq. (1)) of the ‘network of cliques’ (i.e., the network that results from the juxtaposition and/or overlapping process). The
normalized density of an initial state of isolated cliques is given by Eq. (3).

∆norm =
∆ − ∆q0

1 − ∆q0
. (3)

Interpreting the above definition (Eq. (3)), the normalized density ∆norm = 0 corresponds to the case where there is no
juxtaposition or overlapping process (i.e. there is no common vertices to cliques in a network) and∆ = ∆q0. The normalized
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density ∆norm = 1 corresponds to the case where the overlapping process is complete and the resulting network is a
single clique and ∆ = 1. Thus, the normalized density zero means that the cliques are not affected by the juxtaposition
or overlapping process.

Let υ express variations. An expression to quantify the density variation of the ‘network of cliques’, compared with its
initial state of isolated cliques (Fig. 1(a)), is given in Eq. (4):

υ(∆) =
∆ − ∆q0

∆q0
. (4)

The advantage of using this expression is that we can measure the density variation related to ∆q0, i.e., the greater the
variation is, the more cohesive is the ‘network of cliques’ with respect to the initial state (i.e., the initial state of isolated
cliques). Thus, it could be that, for the same values of ∆ in different networks, different values of υ(∆) are obtained. Eq. (4)
can be written in terms of edges and vertices, replacing the densities by their expressions, which results in Eq. (5).

υ(∆) =
|E |

|E0|
·
n0

n
·
n0 − 1
n − 1

− 1 (5)

where n0 represents the number of vertices of an initial state of isolated cliques and n is the number of vertices of a
‘network of cliques’ after running a juxtaposition and/or overlapping process. Similarly, the number of edges follows the
same assumptions. For a real ‘network of cliques’, n ≫ 1 and n0 ≫ 1; therefore, we can use n − 1 ≃ n and n0 − 1 ≃ n0.
With these approximations, Eq. (5) can be written as follows:

υ(∆) ≃
|E |

|E0|
·
n2
0

n2
− 1 =

[n0/n]2

[|E0|/|E |]
− 1. (6)

Then, the density variation is directly proportional to the square of the variation in the number of vertices and inversely
proportional to the variation in the number of edges.

3.2. Average degree

The average degree of an undirected network is the average of ki, which is denoted by ⟨k⟩ =
1
n

n
i ki, where n = |V |.

Another way to denote the average degree of an undirected network is ⟨k⟩ = 2|E |/n. Therefore, the average degree is
associated with the density by Eq. (7).

∆ =
⟨k⟩

n − 1
=

⟨k⟩
kmax

. (7)

Therefore, the average degree for the structure of the ‘network of cliques’ presented earlier (Fig. 2) is expressed by Eq. (8).

⟨kq0⟩ =

nq
i=1

qi(qi − 1)

n0
. (8)

From the definition above, we can establish a parameter for the ‘network of cliques’ that captures the variation rate of the
average degree, i.e., a parameter that compares the average degree of the initial state of isolated cliques with the average
degree of the real ‘network of cliques’. Eq. (9) shows this variation.

υ(⟨k⟩) =
⟨k⟩ − ⟨kq0⟩

⟨kq0⟩
. (9)

3.3. Fragmentation

The fragmentation of a network accounts for the relationship between the number of components and the number of
vertices. A definition of fragmentation that considers the size of the components [8] is given by Eq. (10).

F = 1 −

m
j=1

nj(nj − 1)

n(n − 1)
(10)

where nj is the number of vertices of the component j and m is the number of components of the fragmented network. For
an unfragmented network, F = 0, and for a completely fragmented network, F = 1. If 0 < F ≤ 1, then the network is
unconnected.

For the initial state of isolated cliques, the maximum should occur when the cliques are all unconnected, as in Fig. 1(a).
We propose that the fragmentation index for the ‘network of cliques’ is given by Eq. (11).

Fclique =
Comp − 1
nq − 1

. (11)
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In this equation, when the quantity of components (Comp) is exactly the number of cliques in an initial state of isolated
cliques, F = 1 (i.e., the ‘network of cliques’ is completely fragmented). On the other hand, when the ‘network of cliques’
is connected (Comp = 1), F = 0. This index measures a fragmentation based on the reduction of the components (i.e., the
defragmentation process during the formation of the ‘network of cliques’). In this approach, the size of the components is
not accounted for, i.e., what matters is how the cliques are connected regardless of their initial size.

3.4. Cut point

From a connected network, we can remove some vertices that produce an unconnected network (i.e., a networkwith two
or more components). These special vertices are called cut points (Pc). The quantity of cut points depends on the topology of
the network. For example, for the same quantity n of vertices, the star network (Fig. 3(c)) has only one cut point, while for
the line network (Fig. 3(a)), it has n − 2 cut points, and for the circle network (Fig. 3(b)), it has no cut points.

For a ‘networks of cliques’ to be minimally connected, the maximum number of cut points occurs in the ‘networks of
cliques’ that are arranged in the line or the layer layouts (Fig. 2(a) and (d)), because in these layouts each clique is connected
with another by only one vertex, which makes up a total of nq − 1 cut vertices; the other vertices of the cliques are not cut
vertices. On the other hand, ‘networks of cliques’ arranged in a star layout (Fig. 2(c)) has only one cut point, and ‘networks
of cliques’ arranged in a circle layout (Fig. 2(b)) has no cut points. We can then normalize the number of cut points in a real
‘network of cliques’ using the maximum amount allowed by Eq. (12).

Pcnorm =
Pc

nq − 1
. (12)

This indexmeasures the proportion of themaximumpossible number of cut points. Low values of Pcnorm could be associated,
in a non-exclusive way, with both the juxtaposition and the overlapping processes in ‘networks of cliques’ arranged in circle
or star layouts. High values indicate juxtaposition associated with ‘networks of cliques’ arranged in layer or linear layouts.

3.5. Diameter

Although it is not possible to establish a simple expression to calculate the average shortest path or the geodesic distance
l to a ‘networks of cliques’ that are minimally connected in terms of the number of cliques nq, we present methods for
calculating the diameter of the four ‘networks of cliques’ structures (Fig. 2):
• For a ‘networks of cliques’ arranged in a line layout (Fig. 2(a)), the diameter D = nq.
• For a ‘networks of cliques’ arranged in a circle layout (Fig. 2(b)), the diameter D = ⌈(nq + 1)/2⌉, where the notation ⌈x⌉

denotes the smallest integer not less than x.
• For a ‘networks of cliques’ arranged in a star layout (Fig. 2(c)), the diameter D = 2.
• Finally, the diameter for a ‘networks of cliques’ arranged in a layer layout (Fig. 2(d)) depends on the topology and the

distribution of the sizes of the cliques. Let Q0 denote the central clique of a ‘networks of cliques’ arranged in a layer
layout. We can call Q1 the first layer of cliques, i.e., the cliques that are connected to a central clique (Q0) by its vertices.
Subsequently, Qi can be understood as an ith layer, and the process continues until the last layer QNc . The index Nc is
the total number of layers. In addition, Nc is not the same for a given distribution of sizes of cliques; Nc also depends
on how the cliques are connected. Thus, for a ‘networks of cliques’ arranged in a layer layout, the diameter is given by
D = (2Nc +1), if the cliques of the last layer are connected to different cliques of the penultimate layer, and the diameter
D = 2Nc if the cliques of the last layer are connected to only one clique of the penultimate layer.

In summary, the structure of ‘networks of cliques’ arranged in a line layout maximizes the diameter, while the structure
‘networks of cliques’ arranged in a star layout minimizes the diameter.

We can then establish an appropriate normalization for the diameter of the ‘networks of cliques’with the samenumber of
cliques, to reflect a topology closer to the theoretical structures.Whenyouhavenq > 3, a valuemuch lower than expected for
real ‘networks of cliques’, the smaller diameter is, theoretically for ‘networks of cliques’, arranged in a star layout, followed
by the diameter of ‘networks of cliques’ arranged in circle and linear layouts, in that order. The diameter of the ‘networks
of cliques’ arranged in a layer layout is between the extremes. We define a ‘‘reference diameter ’’ of ‘networks of cliques’ that
are minimally connected as follows:

Dref =
D − 2
nq − 2

. (13)

The Dref index ranges between 0 and 1 because nq > 2, and the ‘networks of cliques’ is not a single clique, in which case the
diameter is 1. Note that the reference diameter Dref is a cohesion index of cliques, while the geodesic distance l measures
the cohesion of the vertices. Similar to the values of nq ≫ D for the ‘networks of cliques’, the resulting values of Eq. (13)
are usually close to zero, which complicates the interpretation. A change of scale is convenient and can be performed with
a logarithmic normalization proposed by Eq. (14).

D∗

ref =
ln(D/2)
ln(nq/2)

. (14)
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Table 1
Classification of types of theoretical structures of ‘networks of cliques’ that
are minimally connected according to the reference diameter D∗

ref .

Reference diameter Theoretical structures of ‘networks of cliques’

0–0.25 Star layout
0.26–0.75 Circle or layer layouts
0.76–1.00 Line layout

Arbitrarily but consistently, we can establish a classification scale that associates the ranges of reference diameter values
with the theoretical structures of ‘networks of cliques’ that are minimally connected, as shown in Table 1.

3.6. Clustering coefficient

The clustering coefficient measures the transitivity between the vertices of a network, i.e., the probability that two vertices
that are connected to a third vertex are also connected. Eq. (15) [2] is widely used to calculate the clustering coefficient of
networks and is characterized by a focus on local indices (i.e., the clustering coefficient of each vertex based on its neighbors,
which is given by Ci =

2Ei
ki(ki−1) ).

Cws =
1
n

n
i=1

Ci. (15)

Another approach, which accounts for the overall transitivity, uses the equivalent Eqs. (16) or (17) ([9,5], respectively).

C =
3 × number of triangles in the network
number of connected triples of vertices

(16)

C =
6 × number of triangles in the network

number of path of length two
. (17)

The intention here is to find away to express the transitivity of the cliques, from the values of the transitivity of their vertices
that are calculated for the theoretical structures of ‘networks of cliques’ that are minimally connected. The theoretical
structures of ‘networks of cliques’ minimally connected are those that optimize the transitivity of the cliques: (i) the
‘networks of cliques’ arranged in a star layout maximize the transitivity (in this type of arrangement, all of the cliques are
connected to all of the others), and (ii) the ‘networks of cliques’ arranged in a line layout minimize the transitivity (in this
type of arrangement, there is no transitivity of the cliques).

Let us begin by examining the clustering coefficient Cws. For the structure of ‘networks of cliques’ arranged in a star
layout, all of the vertices have Ci = 1, except for the common vertex to all of the cliques and those vertices of degree (Sk1 ).
Therefore, the total contribution of the vertices that have Ci = 1 to


Ci of Eq. (15) is given by n− 1− Sk1 . For the common

vertex, the clustering coefficient is less than 1. Thus, Cws ≃ 1 for large values of n because in general Sk1 ≪ n for connected
networks. For the ‘networks of cliques’ that are arranged in a line layout, the fraction of vertices with Ci = 1 is given by
n− (nq − 1)− Sk1 , and the contribution of the cut vertices can be expressed by ε(nq − 1) with 0 ≤ ε < 1. Consequently, the
total contribution of


Ci can be expressed by n − (nq − 1)(1 − ε) − Sk1 , which implies values of Cws that are smaller than

those for the structure of ‘networks of cliques’ arranged in a star layout, but may be close depending on the contribution of
the connecting vertices.

For the clustering coefficient (transitivity) C given by Eq. (16), we can find expressions for ‘networks of cliques’. By the
definition of clique, each one of them contributes with

 qi
3


triangles, where qi is the size of the ith clique. The total number

of triangles of ‘networks of cliques’ that are minimally connected (and theoretically for the initial state of isolated cliques)
is given by Eq. (18).

N△0 =
1
6

nq
i=1

qi(qi − 1) (qi − 2). (18)

The calculation of the number of triples requires the identification of vertices of two categories: (i) vertices of the cliques and
(ii) connection vertices, which are also counted in the first category. Each vertex of a clique contributes with ki(ki − 1)/2
triples, where ki is the vertex degree. As the degrees of the vertices of a clique are equal to (qi − 1), we can express the
number of triples of each vertex by (qi − 1)(qi − 2)/2. The total number of triples for each clique is qi(qi − 1)(qi − 2)/2.

For each connection vertex vj, the number of triples is given by kj · kk, where kj and kk represent the degrees of two
adjacent cliques.

Each cut point or cut vertex (i.e., the white vertices in Fig. 2(a), (d) and (c)) or connection vertex (i.e., the white vertices
in Fig. 2(b)) contributes with (qj − 1)(qk − 1) triples. From the above, the total number of connected triples of vertices is
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given by Eq. (19).

NT =
1
2

nq
i=1

qi(qi − 1) (qi − 2) +


(qj − 1) (qk − 1). (19)

Substituting these quantities into Eq. (16), the transitivity for the theoretical structures of ‘networks of cliques’ that are
minimally connected is given by Eq. (20).

Cq =
3N∆0

NT
=

1
2

nq
i=1

qi(qi − 1) (qi − 2)

1
2

nq
i=1

qi(qi − 1) (qi − 2) +


(qj − 1) (qk − 1)
. (20)

Alternatively, to simplify the interpretation of the coefficient, we can rewrite Eq. (20), as follows:

1
Cq

= 1 +


(qj − 1) (qk − 1)

1
2

nq
i=1

qi(qi − 1) (qi − 2)
. (21)

When a ‘network of cliques’ has only one clique, there are no cut or connection vertices; then, the numerator (


(qj −

1) (qk − 1)) of Eq. (21) is equal to 0 and Cq = 1. Another way to reach the same conclusion is to note that, in this case,
qj = qk for every vertex. It is also important to observe that the transitivity for the structures of ‘networks of cliques’ that
are minimally connected depends not only on the theoretical structure but also on how the cliques are connected according
to their sizes. This scenario occurs because the number of transitive triples of the cut or connection vertices varies with the
cliques’ arrangement in the network. However, for all of the theoretical structures, the basic principle is that the transitivity
is minimal if the product of the sizes of the adjacent cliques (qj − 1)(qk − 1) is at a maximum. In addition, the transitivity
can be calculated by properly arranging the cliques by their sizes, maximizing these products.1

Based on the foregoing, the ‘networks of cliques’ arranged in a star layout is the arrangement that has the lowest
transitivity compared to networks with the same amount of cliques of corresponding sizes (i.e., the same distribution of
clique sizes).

This scenario occurs because, when calculating the contribution of the triplets that have the cut points, there are nq
2


= nq(nq −1)/2 pairs of cliques (i.e., two cliques connected after the juxtaposition process) for the ‘networks of cliques’

arranged in a star layout, while for the ‘networks of cliques’ arranged in line and layer layouts, there are only (nq − 1) pairs
of cliques.2 The number of pairs of cliques that accounts for the connection vertices of a ‘network of cliques’ arranged in a
circle layout is nq.

From the perspective of the theoretical structures of ‘networks of cliques’ that are minimally connected, we can
summarize with the following points: (i) the structure of the ‘networks of cliques’ arranged in a star layout (having the
maximum transitivity in terms of cliques) has Cws ≃ 1 and Cq → 0 for networks with a large number of cliques; and (ii) the
structure of ‘networks of cliques’ arranged in a line layout (having the minimum transitivity in terms of cliques) typically
has values of Cws that can be too high. For Cq, the analytical comparison for the same theoretical structure is not simple.
Simulations show that these values are close to Cws and that Cws − Cq is no more than 0.12.

Therefore, a ‘network of cliques’ is characterized as small-worldwith respect to the transitivity between the cliques (and
not only between the vertices). We expect that this type of network has Cws ≃ 1 (which can occur for both the structures of
‘networks of cliques’ arranged in star and line layouts), but having C ≃ 0 (which occurs only for the structure of ‘networks
of cliques’ arranged in a star layout). Otherwise, we can say that the greater the difference Cws − C for the real ‘network of
cliques’ is, the more transitive the network, i.e., the transitivity of cliques Cclique = Cws − C quantifies the transitivity in terms
of the cliques, while Cws and C could separately have very different values for the same structure in an attempt to capture
the transitivity of the network in terms of the vertices.

Using the two parameters (i.e., the reference diameter and the transitivity of the cliques) described above, we can
establish the ‘networks of cliques’ as small-world networks that are based on their basic elements (i.e., cliques). The ‘network
of cliques’ arranged in a star layout has theminimumdiameter and themaximum transitivity of cliques Cclique. It is, therefore,
reasonable that the small-world topology for ‘networks of cliques’ is one in which Cclique ≥ 0.5, and the reference diameter
is determined for ‘networks of cliques’ arranged in a star layout (0 ≤ D∗

ref ≤ 0.25, Table 1); this result occurs because the
diameter D is much closer to 2 than the maximum value nq.

The quantitative summary of the proposed indices applied to the theoretical structures of ‘networks of cliques’ that are
minimally connected (Fig. 2) is presented in Table 2.

1 For the structure of ‘networks of cliques’ arranged in a star layout, the parcel (qj − 1) (qk − 1) does not depend on the arrangement of the sizes of
cliques because all of the cliques are adjacent to each other.
2 Smaller numbers of pairs of cliques result in a higher transitivity. In the case of ‘networks of cliques’ arranged in line and layer layouts that have the

same number of pairs of cliques, the layer structure has a lower value for the transitivity because its configuration allows most of the cliques (of size qr ) to
pair up to r other cliques. On the other hand, for the linear structure, two pairs of cliques is the maximum possible number.
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Table 2
Quantitative summary of the indices of cohesion for the theoretical structures of ‘networks of cliques’ that are minimally connected
(Fig. 2).

Theoretical structures ∆q0 ∆ υ(∆) D nq D∗

ref Cws C Cclique

Line layout 0.1080 0.1858 0.7194 8 8 1.0000 0.8093 0.6543 0.1550
Circle layout 0.1080 0.2035 0.8831 5 8 0.6610 0.7790 0.6474 0.1316
Star layout 0.1080 0.1858 0.7194 2 8 0.0000 0.9595 0.3739 0.5856
Layer layout 0.1080 0.1858 0.7194 4 8 0.5000 0.8429 0.5942 0.2487

Table 3
Basic statistics for the semantic networks based on the titles of the scientific papers.

Journal Date Titles Words (n0) Vertices (n) |E0| |E | n0/n |E0|/|E | Comp.

AFE 1999 a 2008 371 3,987 1,561 20,941 17,880 2.5541 1.1712 2
APPL 1980 a 2009 658 5,113 1,322 19,228 14,151 3.8676 1.3588 1
ARJG 1969 a 2008 971 6,087 2,158 19,373 16,530 2.8207 1.1720 10
CB 1994 a 2008 1,642 13,464 4,225 56,997 46,560 3.1867 1.2242 13
HR 1947 a 2009 3,000 19,960 3,884 66,040 49,176 5.1390 1.3429 10
Nature 1997 a 2009 35,163 178,598 23,160 454,442 349,546 7.7115 1.3001 142
PEM 1986 a 2009 703 5,247 1,186 18,673 12,903 4.4241 1.4472 1
PRA 2007 a 2008 3,205 23,515 4,098 84,428 60,515 5.7382 1.3952 2
PRB 2007 a 2008 7,844 64,506 8,386 256,772 160,658 7.6921 1.5983 4
PRC 1970 a 2009 23,000 160,528 14,204 552,463 254,445 11.3016 2.1712 2
PRD 2007 a 2008 5,527 38,430 4,700 130,070 73,337 8.1766 1.7736 4
PRE 2007 a 2008 4,156 30,013 5,296 104,763 79,660 5.6671 1.3151 3
PRL 2007 a 2008 5,929 42,496 7,371 146,205 107,516 5.7653 1.3598 5
Science 1997 a 2009 11,192 74,823 15,240 233,040 188,346 4.9096 1.2373 55
SHI 1979 a 2008 845 6,431 2,098 23,943 20,442 3.0653 1.1713 1

4. Results and discussion

To study the proposed indices of cohesion, we have used a dataset that is composed of 15 scientific journals: Agricultural
and Forest Entomology—AFE; Applied Psycholinguistics: Psychological and Linguistic Studies Across Languages and Learning—
APPL; Antipode: A Radical Journal of Geography—ARJG; Chemistry and Biology—CB;Human Relations: Towards the Integration of
the Social Sciences—HR; Nature—Nature; Probabilistic Engineering Mechanics—PEM; Physical Review A—PRA; Physical Review
B—PRB; Physical Review C—PRC; Physical Review D—PRD; Physical Review E—PRE; Physical Review Letters—PRL; Science—
Science and Sociology of Health and Illness—SHI.

Details of the construction of the semantic networks based on the titles of the scientific papers can be found in Refs. [10,6,
11,7], and we summarize the basic statistics for the semantic networks based on the titles of the scientific papers in Table 3.

In Table 3, we observe that the networks of the journals APPL, PEM and SHI are connected. From a preliminary analysis,
we also note that the number of components does not necessarily depend on the quantity of the titles (e.g., PRC, with
23,000 titles, has only 2 components; Science, with 11,192 titles, has 55 components; and Nature, with 35,163 titles, has
142 components). The vocabulary of the journals, combined with the disciplinary aspect, influences the quantity of the
components.

Using the 15 semantic networks based on titles of scientific papers as the empirical dataset, classical network indices
were calculated and compared with the proposed indices for ‘networks of cliques’. The results are discussed as follows.

4.1. Density

The density, which relates the number of edges with the maximum possible in a network, is relatively low for all of the
semantic networks based on the titles of the scientific papers (Table 4).

The normalized value of ∆ reflects only the fact that the reference to the minimum value (∆norm = 0) is associated with
the initial state of isolated cliques (e.g., Fig. 1(a)) and not to a network in which the vertices are all isolated, as accounted
for in a classical density calculation. Thus, the normalized density approximately scales linearly with the classical density,
as shown in Fig. 4.

Moreover, the rate of density variation is an indicator of the proportion of similar vertices and edges that are absorbed
for building the ‘network of cliques’ (i.e., the common vertices are absorbed by juxtaposition and/or overlapping processes,
and the edges that connect pairs of common vertices are absorbed by the overlapping process) with respect to the initial
state of isolated cliques.

For the semantic networks based on the titles of scientific papers, higher values for υ(∆) indicate that, in the process of
network building, the titles are connected to each other by a greater number of words without a large reduction of edges,
whereas the density variation increases with the square of the variation of vertices (Eq. (6)). It is important to note that the
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Table 4
The density and fragmentation values of the semantic networks based on titles of scientific papers.

Journal Density (∆) Norm. Dens. (∆norm) Var. Dens. υ(∆) Frag. (F ) Frag. Clique (Fclique)

AFE 0.014685 0.012081 4.572205 0.003839 0.002703
APPL 0.016206 0.014757 10.015048 0.000000 0.000000
ARJG 0.007147 0.006114 5.875532 0.023024 0.009278
CB 0.005218 0.004592 7.297165 0.010387 0.007313
HR 0.006521 0.006192 18.669641 0.014362 0.003001
Nature 0.001303 0.001275 44.742512 0.018032 0.004010
PEM 0.018362 0.017028 12.533586 0.000000 0.000000
PRA 0.007209 0.006905 22.605432 0.000976 0.000312
PRB 0.004570 0.004447 36.024910 0.000715 0.000383
PRC 0.002523 0.002480 57.829731 0.000141 0.000043
PRD 0.006641 0.006466 36.702959 0.002126 0.000543
PRE 0.005681 0.005450 23.424281 0.003018 0.000481
PRL 0.003958 0.003797 23.445694 0.003793 0.000675
Science 0.00162 0.001541 19.043115 0.013580 0.004825
SHI 0.009293 0.008144 7.024762 0.000000 0.000000

Fig. 4. Density ∆ vs. normalized density ∆norm for the semantic networks based on the titles of scientific papers. A fit was performed that was linear in
f (x) = bx, where b = 0.910 with R2

= 0.997.

process of building a ‘network of cliques’ results in high values for the density variation and reflects the predominance of
the juxtaposition process or, at most, the overlapping process with three vertices, whereas in the juxtaposition process, the
vertices are reducedwithout a reduction in the edges; in the overlapping processwith two vertices, an edge is reduced,while
in the overlapping processwith three vertices, the reduction has the same value for the vertices and edges (from four ormore
vertices, the number of edges is greater than the number of vertices). This fact is shown in Fig. 5, i.e., the density variation
can be interpreted by the ratio between the total number of words of the titles n0 and the number of words (vertices) n of
the network.

In Table 4, we show that the PRC semantic network has the highest density variation. This result is related to a greater
variation in the vertices among all of the networks because the variation in the edges has a slight impact on the density
variation.

Furthermore, this scenario implies that the vocabulary used in the titles is more homogeneous for this network. In
addition, we also show in Table 3 that the connections by the juxtaposition process are predominant; this construct can be
noted in the values of the variations of the vertices (n0/n) compared with the values of the variations of the edges (|E0|/|E |).

4.2. Fragmentation

As mentioned above, fragmentation is an index that is used to normalize the number of components in a network. The
fragmentation index F (Eq. (10)) depends on the size of the components. In the ‘networks of cliques’ case, fragmentation
depends on the relative size of the largest component, which is given by the percentage of vertices of the component in
relation to the total number of vertices. The fragmentation values shown in Table 4 can best be compared bymeans of Fig. 6.
We can note that the ARJG semantic network is more fragmented.

Some changes in the fragmentation values can also be observed (e.g., CB and HR semantic networks). For example, for
the fragmentation F , the HR semantic network ismore fragmented than the CB semantic network; on the other hand, for the
fragmentation of clique Fclique, the CB semantic network is more fragmented than the HR semantic network. It follows that
the components (except for the largest component) of the CB semantic network are larger than those of the HR semantic
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Fig. 5. Density variationυ(∆) vs. n0/n for the semantic networks based on the titles of scientific papers. A fitwas performed thatwas linear in f (x) = bx+a,
where b = −12.367 and a = 6.387 with R2

= 0.954.

Fig. 6. Values of the fragmentation (F ) and the fragmentation of cliques (Fclique) for the semantic networks based on the titles of papers.

network,which directly influences the F values. For the ‘network of cliques’, and specifically for the semantic networks based
on titles of papers, the interpretation of fragmentation must account for how the titles came together to form the network,
i.e., how the titles are ‘‘defragmented’’ so that they are best captured by the Fclique values. In absolute terms, the Fclique values
result from less fragmented networks (i.e., the networks are less fragmented in relation to the titles of the papers compared
to in relation to the words).

4.3. Cut point

By definition, the indices discussed above can be applied to unconnected networks. However, other indices are difficult
to interpret for unconnected networks, in spite of being subjected to calculations. Because unconnected semantic networks
have a largest component withmore than 99% of the vertices, it is possible to analyze and discuss appropriate indices for the
connected networks, such as the cut points. For the semantic networks that are based on the titles of papers, the absolute
and normalized values for the cut points are shown in Table 5.

Considering only the absolute values, theNature semantic network hasmore cut points, but the normalization shows that
the ARJG semantic network is a more ‘‘fragile’’ network. A relationship between the initial state of isolated cliques and the
largest component of the specific ‘network of cliques’ can bemade using the concepts of the cut point and the fragmentation
of cliques. This relationship is shown in Fig. 7,which shows only the unconnected networks (i.e., not including APPL, PEMand
SHI). The results indicate a tendency for networkswith higher values for the fragmentation of cliques to have proportionately
higher values for the normalized cut point index. This result means that the absence of links between the components in an
unconnected network is directly reflected in its core (i.e., the largest component) because of the fragility of the connections
(expressed by the normalized cut point index).
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Fig. 7. Variation in the fragmentation of the clique vs. cut point index normalized for semantic networks based on the titles of papers. Only unconnected
networks are shown.

Table 5
Values of the cut points (Pc ), normalized cut points (Pcnorm , Eq. (12)), reference diameter (D∗

ref , Eq.
(13)) and clustering coefficients (Cws and C , Eqs. (15) and (16), respectively; and Cclique = Cws − C)
of the major components of the connected semantic networks based on the titles of papers.

Journal Pc Pcnorm D∗

ref Cws C Cclique

AFE 2 0.005420 0.1755 0.7919 0.2079 0.5840
APPL 5 0.007610 0.1581 0.7578 0.1679 0.5899
ARJG 39 0.040583 0.2028 0.7717 0.1696 0.6020
CB 36 0.022099 0.1367 0.8058 0.1337 0.6721
HR 32 0.010702 0.1503 0.7346 0.1376 0.5970
Nature 602 0.017190 0.1282 0.6997 0.0832 0.6165
PEM 1 0.001425 0.1182 0.7660 0.1801 0.5860
PRA 12 0.003746 0.1242 0.7363 0.1403 0.5960
PRB 6 0.000765 0.0838 0.7881 0.1318 0.6563
PRC 34 0.001478 0.0980 0.8340 0.1080 0.7260
PRD 13 0.002354 0.0875 0.7402 0.1496 0.5907
PRE 17 0.004093 0.1200 0.7304 0.1298 0.6006
PRL 18 0.003041 0.1146 0.7510 0.1277 0.6234
Science 218 0.019480 0.1743 0.7285 0.0872 0.6413
SHI 9 0.010664 0.1515 0.7629 0.1543 0.6085

4.4. Small-world characterization

The distance and clustering coefficients are widely used to characterize a network as small-world [2]. However, the
‘networks of cliques’, by construction, usually have high values for the clustering coefficients (Eq. (15)). Especially for the
semantic networks based on the titles of papers, the clustering coefficient values are between 0.69 and 0.84. These values
are much higher than those for the corresponding random networks, and the geodesic distances are close to those for the
random networks. According to Ref. [2], these types of networks are small-world networks.

Theoretical discussion on the proposed indices (Section 3) allows us to quantify the transitivity of the papers’ titles based
on the transitivity of the words, using as a reference the relationship between the concepts of the clustering coefficient Cws
and the transitivity coefficient C . As the distances between the titles, these values are evaluated by the reference diameter
(D∗

ref ) of the network. Reference diameters near to 0 (zero) are compatible with the ‘networks of cliques’ arranged in a star
layout, and at the other end, reference diameters close to 1 (one) are compatible with the ‘networks of cliques’ arranged in a
line layout. In Table 5,we show that the reference diameters for the semantic networks based on the titles of papers are in the
range of the ‘networks of cliques’ arranged in a star layout (Table 1). On the other hand, the relationship between the cluster-
ing and transitivity coefficients satisfies the recommendations, because all semantic networks have Cclique > 0.5, as shown
in Table 5. These results leave no doubt about the small-world topology presented by the semantic networks based on the
titles of papers in relation to the words of the titles, as observed in Refs. [6,7]. Moreover, the results show that a small-world
topology occurs in relation to the titles (i.e., the cliques). In sum, the topological characterization is intended to cover not only
the formation of clusters of vertices, which is trivial in network of cliques, but also the clusters of cliques, which is less trivial.

5. Concluding remarks

These research results allow us to show that some of the classical parameters used in the analysis of networks are
not entirely suitable for ‘networks of cliques’. The traditional analysis does not take into account the juxtaposition and
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overlapping processes in the formation of ‘network of cliques’. A network of cliques, as defined in this paper, has particular
characteristics: some indices have high values in comparing to non-network of cliques (e.g. density, degree of vertex), due
to the initial state of isolated cliques. Within this context, we can measure and interpret more appropriately the studied
networks.

Density variation (υ(∆)) allows us to infer with respect to the homogeneity of the vocabulary of the semantic network,
and it is an index that is directly related to the quotient between the number of vertices of the initial state of isolated cliques
and the number of vertices of the ‘networks of cliques’ after the processes of juxtaposition and/or the overlapping of cliques.
For semantic networks that are based on titles of papers, the density variation scales linearly with the quotient word/vertex
because this variation was found to be predominant over the variation of edges.

The fragmentation of cliques and the cut point index are more suitable for ‘networks of cliques’ and exhibit a close
relationship. In addition, for the semantic networks based on the titles of papers, these indices linearly relate the number of
unconnected titles to the fragility of the largest component on the withdrawal of vertices.

Finally, the characterization of a semantic network based on the titles of papers (such as small-world, via the geodesic
distance and the clustering coefficient of words) becomes somewhat trivial by virtue of the construction of semantic
networks (i.e., ‘networks of cliques’). The parameters used in this research (i.e., the diameter and transitivity coefficient
of the cliques) also enable us to investigate the small-world feature from the titles’ perspective. This study opens a fruitful
field for further investigations, such as the degree distribution and dynamic behavior of ‘networks of cliques’, which is not
addressed here.
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