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Dihedral-angle Gaussian distribution driving protein foldingI
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Abstract

The proposal of this paper is to provide a simple angular random-walk model to build up polypeptide structures, which
encompass properties of dihedral angles of folded proteins. From this model, structures will be built with lengths ranging from
125 up to 400 amino acids for the different fractions of secondary structure motifs, in which dihedral angles were randomly chosen
according to narrow Gaussian probability distributions. In order to measure the fractal dimension of proteins three different cases
were analyzed. The first contained α-helix structures only, the second β-strands structures and the third a mix of α-helices and
β-sheets. The behavior of proteins with α-helix motifs are more compact than in other situations. The findings herein indicate that
this model describes some structural properties of a protein and suggest that randomness is an essential ingredient but proteins are
driven by narrow angular Gaussian probability distributions and not by random-walk processes.
c© 2007 Elsevier B.V. All rights reserved.
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The manner in which a protein folds from a random coil into a unique native state in a relatively short time is one of
the fundamental puzzles of molecular biophysics. It is well accepted that a unique native three-dimensional structure,
characteristic of each protein and determined by the sequence of its amino acids’ sequence, dictates protein functions.
The folding process should involve a very complex molecular recognition phenomenon depending on the interplay
of many relatively weak non-bonded interactions. This would lead to a huge number of possible final conformations
under conventional molecular optimization methods based on the search for the minima of the energy hyper-surface.
This number, which should increase with the number of the chain’s degrees of freedom, however, is severely restricted
during the real folding process, excluding relevant portions of the energy landscapes as far as an extended or random
conformation is chosen as the initial state [1–10]. On the other hand, if the extreme limit, were considered, where a
polypeptide chain departs from its denatured state and in relatively very short period of time finds its unique native

I This work received financial support from CNPq and CAPES (Brazilian federal grant agencies), FAPESB (Bahia state grant agency) and
FACEPE (Pernambuco state grant agency under the grant PRONEX EDT 0012-05.03/04).

∗ Corresponding author. Tel.: +55 81 21267633; fax: +55 81 32710359.
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Table 1
Seven possible pairs of dihedral angles and the associated conformations occurring in several amino acid sequences [13]

Φ Ψ Conformation

−65 −40 A
−89 −1 C

−117 142 B
−69 140 P

78 20 G
103 −176 E
−83 133 O

The α-helix pair is denoted by A while the β-strand pair is denoted by B.

state after searching amongst the astronomical number of possible configurations, the simulating process for proteins
with fifty to five hundred amino acids using approaches such as Monte Carlo and molecular dynamics, becomes
impracticable, due to the very high computation cost. Such a contradictory dynamical picture is known as the Levinthal
paradox [11].

To investigate the role of stochasticity on the final native state, an inverse strategy is proposed, based on a simple
angular three-dimensional random-walk model to build up protein backbones with different lengths and distinct
percentages of secondary structures. In the proposed model, each step has a fixed radial size l0 but dihedral Φ and
Ψ angles of the protein backbone are chosen according to independent Gaussian probability distributions, following
the suggestion given in Ref. [12]. The mean value and standard deviation of each is defined according to the allowed
regions of the Φ/Ψ plot of the frequency distribution of dihedral angles, the so-called Ramachandran map. Φ and
Ψ mean values were used as proposed in the PRELUDE software package [13]. These values were computed from
comparative statistics of the backbone secondary structure for several amino acid sequences. Table 1 indicates the
seven possible pairs of (Φ,Ψ) dihedral angles and the associated structures of the main chain backbone, as predicted
by this method. These specific angles describe the average conformation of a wide range of proteins with known
backbone structures. To simulate structures with a definite percentage of secondary structures f , a characteristic
number of steps n is fixed and the growth process within these n steps is divided into two stages:
(1) The first n × f steps are built according to an angular Gaussian probability distribution, whose mean value is one
pair of angles as seen in Table 1, which in turn is associated with a given structure.
(2) The next n × (1 − f ) steps are built according to an angular Gaussian probability distribution, whose mean value
at each step is randomly chosen from amongst the seven pairs of angles of Table 1.

For the following n steps rules 1 and 2 are repeated upwards to construct a peptide chain with N amino acids.
Therefore, in order to obtain an appropriate choice of the f percentage this stochastic procedure assures that the final
peptide main chain follows the Ramachandran map.

Within this simple model structures of the protein backbone were constructed considering only the dihedral angles.
All other bonded or non-bonded interactions were not explicitly considered as well as excluded volume and steric
effects, which are expected to be taken into account by the appropriate choice of the average values of the Gaussian
probability distributions. For this reason it was possible to generate an elevated number of samples of possible
protein conformations. An exhaustive number of simulations (∼104) were performed considering three basic cases:
(a) f = 0.6 with α-helix structures; (b) f = 0.6 with β-strand structures and (c) the first n/2 steps built with f = 0.6
of α-helix structures and the next n/2 steps with f = 0.6 of β-strand structures, consecutively. Therefore, in the
α-case (a) 60% of the amino acids corresponds on average to α-helix structures, in the β-case (b) 60% of the amino
acids corresponds to β-strands, while in the mixed-case (c) the whole structure has an average of 30% of α-helix and
30% of β-strands. 104 chains of the total size varying from N = 125–400, with the number of steps n = 100 were
generated. For each case described above there was a variation of f in the interval [0, 1], step 0.1. There was also a
variation of the standard deviation σ of the Gaussian distribution within a wide range of values from 0 to π .

Fig. 1 shows the average radius of gyration (〈Rg〉) as a function of the number of amino acids (N ) for the three
distinct choices of structures. From this plot however, a power-law behavior pattern can be observed indicating that
these structures are self-similar. The corresponding scaling exponent, which somehow describes the compactness of
the structure, is calculated by the scaling relation: Rg ∼ N ν , in all cases. The characteristic scaling exponents are
ν = 0.401 ± 0.002 for the α-helix case and ν = 0.417 ± 0.002 for the β-strands case, with these values falling in
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Fig. 1. The average radius of gyration as a function of the number of residues obtained from the simulations with f = 0.60 for the α-helix
structures (�), the mixed structures (M) and β-strands structures (©) with scaling exponent 0.401 ± 0.002, 0.409 ± 0.002 and 0.417 ± 0.002,
respectively, obtained from the relation 〈Rg〉 ∼ Nν . Each point results from the average of 104 simulations. The dashed lines indicate the linear
fitting. The error bars are smaller than the symbol sizes. In all cases σ/π = 0.1 was fixed.

Fig. 2. The dependence of the scaling exponent ν as a function of the percentage f of secondary structures, for α-helices (�), β-strands (©) and
the mixed cases (M). The error bars are smaller than the symbol sizes. In all cases σ/π = 0.1 was fixed. The dashed line indicates the experimental
value ν ' 0.405.

the range of values of real proteins. For the mixed case ν = 0.409 ± 0.002 were achieved. To further analyze the
compactness of structures based on the α-helix, the β-strand and that composed of a mix of α-helices and β-strands
the scaling exponent ν was estimated as a function of the percentage of secondary structure f .

In the Fig. 2 it can also observed that for the three cases studied the scaling exponent ν’s growth is from
ν = 0.302 ± 0.002 when the percentage of secondary structures is close to zero ( f ' 0), i.e., a complete random
structure, up to νmax = 0.520±0.001 corresponding to full ordered structures. Slightly different values were observed
within the interval 0 < f < 1 for the structures composed of α-helices, β-strands and the mixed case, the one built
with α-helix motifs being more compact than the other cases. It is worth mentioning that the lower limit for the
scaling exponent is 1/3, which would correspond to a fully compact three-dimensional structure commonly observed
for globular proteins. However, the plots of Fig. 3 shows that the scaling exponent lies below 1/3 up to ∼0.3, for
lower values of the fraction of secondary structure motif (0 ≤ f < 0.3). Hence, such an interval will correspond to a
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Fig. 3. The dependence of the scaling exponent ν as a function of the variance σ of the Gaussian probability distributions of the dihedral angles
(in units of π ), for the α-helix structure, considering the value of f = 0 (♦), f = 0.40 (O), f = 0.60 (�), f = 0.80 (©) and f = 1.0 (M). The
dashed line indicates the experimental value ν ' 0.405.

high fraction (1 − f ) of a random structure – built with dihedral angles chosen from Gaussian distributions centered
at values randomly chosen at each step from the values given in Table 1. Therefore, it is expected that the excluded
volume and steric effects will not play their role and the model fails to reproduce the expected ν = 1/3 limit behavior.

At this point the behavior of the exponent ν against changes in the Gaussian probability distributions variance is
explored. The increased dispersion of the (Ψ ,Φ) Gaussian distribution corresponds to the increase of randomness
in the chain structure, destroying the role of the f percentage of secondary structures. Fig. 3 illustrates the behavior
of ν as a function of σ/π of the α-helix case considering the value of f = 0.0, 0.40, 0.60, 0.80 and 1.0. For
elevated variance values an increase of the ν exponent approaching to 0.5 was observed for all values of f , which is
associated with the lack of ordering. On the opposite limit, for vanishing variance values an increase of the ν exponent
was observed towards one, which can be easily proved to correspond to the power-law exponent of the linear chain
backbone structure for the f = 1.0 case. However, between these two limits a minimum value of ν is observed around
σ/π = 0.15, independent of the value of f (6= 1.0), corresponding to the maximum compact structures. Therefore,
when fitted with the ν value extracted from data, as discussed below, the corresponding optimum value of f is found
to be around f ' 0.60.

1826 different protein chains deposited in the Brookhaven Protein Data Bank (PDB) were also investigated in order
to provide a comparison with the obtained simulation results. The number of amino acids was measured as a function
of the average radius. Fig. 4 depicts the main characteristics of all systems discussed herein using geometric (dihedral
angles) analysis. The figure indicates that several protein chains deposited in the PDB have a self-similar behavior
pattern when the average radius (〈R〉) is plotted against the number of amino acids (N ). In this case the average radius
signifies the average distance from the geometric center of all coordinates [10]. It was also noticed that an average
value was calculated for radii of chains with the same number of amino acids. This intrinsic characteristic of the
protein structures must be responsible for explaining several aspects of these molecules such as the high compactness,
which has been discussed in several other different contexts [1,2,14–18]. The ν exponent associated with the average
radius obtained is 0.404 ± 0.008, which is in agreement with the recent similar study involving 200 proteins [19].
The volume and mass of proteins with more than fifty amino acids scale with respect to the average radius with
exponents δ = 2.47 ± 0.04 [15] and δ = 2.47 ± 0.03 [17] respectively. This consequently corresponds to an exponent
(ν = 1/δ ≈ 0.405) if we assume that the mass scales to the average radius with exponent one. This exponent would
be associated to mixed chains composed of secondary structures, which according to the present simulations vary
in an interval of 0.401 ≤ ν ≤ 0.417. Furthermore, the PDB proteins present structures with ∼60% of secondary
structures [20], which justifies and confirms our initial assumption of f = 0.6 for simulated structures shown in
Fig. 1. It is worth mentioning that the present model can be generalized for growth chains with distinct percentages of
different structures, according to the corresponding protein Ramachandran map.
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Fig. 4. The behavior of the average radius 〈R〉 against the number of amino acids N for a set of 1826 proteins chains. The scaling exponent
ν = 0.40 ± 0.02.

Through the approach presented herein the protein folding problem has been investigated assuming that proteins
fold in a mixed manner following some directed process while being subject to certain stochastic ingredients. This
signifies that the process is neither completely random, as raised by the Levinthal’s paradox, nor is it entirely driven by
the physical chemistry principles that establish a definite folding pathway. The simple model presented herein focuses
on the stochastic aspects of the formation of the secondary structures which is believed to be the earliest relevant
precursor event in the folding, as confirmed by other recent experimental evidence [21]. According to rules 1 and 2 of
the present model it can be assumed that the formation of a secondary structure (α-helix or β-strands) occurs during a
consecutive fraction f of steps governed by a Gaussian probability distribution, whose parameters (mean and standard
deviation) are extracted from data associated with the Ramachandran map. These parameters, which characterize a
given structure, reflect the physical and chemical processes underlying protein stability. Therefore this fraction f of
the chain somehow mimics the interplay between energy stability and entropy. Thus to the extend that the structure
reaches a certain size it looses stability and folds randomly, changing the mean value of the Gaussian probability
distribution at each step, but still using the possible values extracted from data.

What emerges from this stochastic process is that the narrow Gaussian probability distribution of helical or stranded
arrays do provide an insight into the protein folding process, which goes beyond the possibilities of molecular
structure or molecular dynamics analysis. Actually, this narrow Gaussian probability distribution supplies a peptide
backbone chain with self-similar properties that matches with the one estimated from experimental data (see Fig. 4).
Furthermore, Fig. 3 illustrated that if a probability distribution with wide values of the variance (large values of σ/π )
is considered to approach a uniform probability distribution, the resulting final structure was less compact than that
obtained with the Gaussian distribution process. One further interesting result obtained by the present model is that
backbone chains with α-helix motifs are more compact than the β-strands and the mixed case, a result confirmed by
the current literature [1,22,23]. The fractal dimension (δ = 1/ν ≈ 2.49) obtained from Figs. 1 and 4 are comparable
with that obtained by the volume analysis against radius [15] or by mass-size exponent analysis (δ ≈ 2.47) [17–19].

The results of this study indicate that simulated structures are more compact when secondary portions (α-helices
and/or β-sheets) are present, than those built with other sets of dihedral angles, as shown in Table 1. The method was
systematically compared to other widely used methods of protein folding analysis [1,2,4,6,7]. Several of these methods
do not result in a fully consistent assignment of self-similarity of protein structures. The recent work of Huang [24]
where a sophisticated conditioned self-avoid-walk model was proposed taking into account the hydrophobic effect
and the hydrogen bonding focusing on the physical chemistry mechanisms underlying the protein folding process
should be mentioned. Independent of the details of the underlying physical chemistry mechanisms, building protein
backbones with the method proposed in the present work suggests that these structures are driven by narrow Gaussian
distributions. Thus it is the general conclusion of this work that protein folds like an angular Gaussian-walk and not
as a random-walk problem.
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